Kangweon-Kyungki Math. Jour. 8 (2000), No. 2, pp. 193-198

ON THE C₁-CONSTRUCTION

YOUNGKWON SONG

ABSTRACT. In [4], it is proved that the algebra (S, k^{14}) is not a C_1 construction if the field is the real number field. In this paper, we
will introduce a different proof of the fact that the algebra (S, k^{14}) is not a C_1 -construction.

1. Introduction

Throughout this paper, k will denote the real number field and $M_n(k)$ will denote the set of all $n \times n$ matrices with entries in k. A commutative k-subalgebra R of $M_n(k)$ is a maximal, commutative k-subalgebra of $M_n(k)$ if and only if R satisfies the following condition: If R^* is a commutative k-subalgebra of $M_n(k)$ with $R \subset R^*$, then $R = R^*$. Let **X** denote the category whose objects are ordered pairs (G, H), where G is a finite dimensional, local, commutative k-algebra and H is a finitely generated, faithful G-module. Let $(B, M) \in \mathbf{X}$. The direct sum $B \oplus M$ of the B-modules B and M can be given the structure of a commutative k-algebra by defining multiplication in the following way.

$$(b_1, m_1)(b_2, m_2) = (b_1b_2, m_2b_1 + m_1b_2), b_i \in B, m_i \in M, i = 1, 2.$$

The commutative ring thus defined is called the idealization of M and will be denoted by $B \bowtie M$.

DEFINITION 1.1. Suppose R is a maximal commutative k-subalgebra of $M_n(k)$. We say R is a (B, N)-construction if R is k-algebra isomorphic to $B \bowtie N^{\ell}$ for some $(B, N) \in \mathbf{X}$ and a positive integer ℓ .

Here, N^{ℓ} denotes the direct sum of ℓ copies of *B*-module *N*.

Received August 5, 2000.

¹⁹⁹¹ Mathematics Subject Classification: 15A27, 15A33.

Key words and phrases: c_1 -construction.

The present research has been conducted by the Research Grant of Kwangwoon University in 1999.

Youngkwon Song

REMARK 1.2. The Courter's algebra R in [1] is a (B, N)-construction.

The $B\text{-module }B^\ell\oplus N$ is a $B\bowtie N^\ell\text{-module}$ with scalar multiplication defined as follows.

$$(b_1, \ldots, b_\ell, n)(b, n_1, \ldots, n_\ell) = (b_1 b, \ldots, b_\ell b, nb + \sum_{i=1}^\ell n_i b_i).$$

REMARK 1.3. For $(B, N) \in \mathbf{X}$, it is known that $B^{\ell} \oplus N$ is a finitely generated, faithful, $B \bowtie N^{\ell}$ -module.

If (G, H), (G', H') are two objects in **X**, then a morphism from (G, H)to (G', H') is an ordered pair (σ, τ) , where $\sigma : G \longrightarrow G'$ is a k-algebra homomorphism, $\tau : H \longrightarrow H'$ is a k-vector space homomorphism with $\tau(hg) = \tau(h)\sigma(g)$ for all $h \in H$ and $g \in G$. We will use the notation $(\sigma, \tau) : (G, H) \longrightarrow (G', H')$ to indicate the morphism (σ, τ) from (G, H) to (G', H'). We call a morphism $(\sigma, \tau) : (G, H) \longrightarrow (G', H')$ an isomorphism if σ is a k-algebra isomorphism and τ is a k-vector space isomorphism. In this case we will use the notation $(G, H) \cong_{(\sigma, \tau)} (G', H')$.

DEFINITION 1.4. With the above notations, $(G, H) \in \mathbf{X}$ is a C_1 construction if $(G, H) \cong_{(\sigma, \tau)} (B \bowtie N^{\ell}, B^{\ell} \oplus N)$ for some $(B, N) \in \mathbf{X}$ and a positive integer ℓ .

REMARK 1.5. If R is the Courter's algebra in [1], then (R, k^{14}) is a C_1 -construction.

2. Main results

As we have proved in [4], the algebra (S, k^{14}) is a maximal commutative subalgebra of matrix algebra of size 14 which is not isomorphic to the Courter's algebra. Recall that the element r in the Jacobson radical

of S is the following form :

 $\begin{pmatrix} O_{2\times 2} & & O_{2\times 10} & & O_{2\times 2} \\ c_1 & O & & & & \\ O & c_1 & & & & \\ c_2 & O & & & & \\ O_2 & c_3 & & & & & \\ O_1 & O_2 & c_3 & & & & \\ O_1 & O_1 & O_1 & & & & \\ O_1 & O_1 & O_1 & O_1 & & \\ O_1 & O_1 & O_1 & O_1 & & \\ O_1 & O_1 & O_1 & O_1 & & \\ O_1 & O_1 & O_1 & O_1 & & \\ O_1 & O_1 & O_1 & O_1 & & \\ O_1 & O_1 & O_1 & O_1 & & \\ O_1 & O_1 & O_1 & O_1 & & \\ O_1 & O_1 & O_1 & O_1 & & \\ O_1 & O_1 & O_1 & O_1 & & \\ O_1 & O_1 & O_1 & O_1 & & \\ O_1 & O_1 & O_1 & O_1 & & \\ O_1 & & \\ O_1 & & \\ O_1 & O_1 & & \\ O_1 & O_1 & & \\ O_1$

Here, $c_i, d_i, e_i \in k$ for all i = 1, 2, 3, 4 and the element s in S is the followong form :

$$s = r + aI_n$$

for some $a \in k$.

In [4], it is proved the algebra (S, k^{14}) is not a C_1 -construction if the field is the real number field. Here, in this section, we will introduce a different proof of the fact that the algebra (S, k^{14}) is not a C_1 -construction.

The next theorem can be found in [2] and we restate it.

THEOREM 2.1. Suppose (R, J(R), k) is a local maximal commutative subalgebra of matrix algebra of size 14, $\dim_k R = 13$ and i(J(R)) = 3. Then, (R, k^{14}) is a C_1 -construction if and only if there exist R-module generators θ_1 and θ_2 of k^{14} whose annihilators $I_1 = Ann_R(\theta_1)$ and $I_2 = Ann_R(\theta_2)$ satisfy the following three properties:

(1) (0) :_R $I_i = I_1 + I_2, i = 1, 2.$

(2) (0) \rightarrow ($I_1 + I_2$) $\rightarrow R \rightarrow R/(I_1 + I_2) \rightarrow$ (0) splits as k-algebras.

(3) There exists an *R*-module isomorphism $f : I_1 \to I_2$ such that $\theta_1 f(x) = \theta_2 x$ for all $x \in I_1$.

In [4], we have proved the following Lemma.

LEMMA 2.2. Suppose S is the maximal commutative subalgebra in [4]. Then,

(1) $dim_k S = 13, i(J(S)) = 3$

(2) The minimal number of generators of k^{14} is 2.

Youngkwon Song

(3) The socle of S, Soc(S) is generated by $E_{13,1}, E_{13,2}, E_{14,1}, E_{14,2}$. Here, $E_{i,j}$ is a matrix of size 14 whose entries are all zero except the (i, j)-th entry that is 1.

We now introduce a different proof of the fact that (S, k^{14}) is not a C_1 -construction under the real number field.

THEOREM 2.3. Let k be the real number field. Suppose S is the maximal commutative subalgebra in [4]. Then, (S, k^{14}) is not a C_1 -construction.

Proof. Let $\{\theta_1, \theta_2\}$ be an arbitrary S-module generator. Then, there exist $a_i, b_i \in k, i = 1, ..., 14$ such that

$$\theta_1 = \sum_{i=1}^{14} a_i \epsilon_i, \ \theta_2 = \sum_{i=1}^{14} b_i \epsilon_i$$

Here, $\{\epsilon_1, \ldots, \epsilon_{14}\}$ is the standard basis of k^{14} . Now, let $I_i = Ann_S(\theta_i)$ for i = 1, 2. If $r \in I_1$, then we can write $r = aI_{14} + r^*$ for some $a \in k$ and $r^* \in J(S)$. Thus, we have

$$\theta_1 a + \theta_1 r^* = 0$$

This implies

$$a_{13}a = 0, a_{14}a = 0$$

Note that $\epsilon_i \in k^{14}J(S)$ for $i = 1, \ldots, 12$ and $\dim_k(k^{14}/k^{14}J(S)) = 2$. Thus, $\{a_{13}\epsilon_{13} + a_{14}\epsilon_{14}, b_{13}\epsilon_{13} + b_{14}\epsilon_{14}\}$ is a k-vector space basis of $k^{14}/k^{14}J(S)$. This implies $a_{13} \neq 0$ or $a_{14} \neq 0$ and hence a = 0 and so $r = r^*$. Thus, $I_1 \subset J(S)$ and by the similar way, we get $I_2 \subset J(S)$.

Now, we want to show that $I_i \subset Soc(S)$ for i = 1, 2 by considering the following three cases :

(case 1) $a_{13} \neq 0, a_{14} \neq 0$ (case 2) $a_{13} \neq 0, a_{14} = 0$ (case 3) $a_{13} = 0, a_{14} \neq 0$

We now consider the first case. If $r \in I$, then $r \in I(S)$ and hence r can be writted

If $r \in I_1$, then $r \in J(S)$ and hence r can be written as follows:

$$\begin{pmatrix} O_{2\times 2} & & O_{2\times 10} & & O_{2\times 2} \\ c_1 & O & & & & \\ O & c_1 & & & & \\ c_2 & O & & & & \\ C_2 & O & & & & \\ O & c_2 & & & & \\ c_3 & O & & & & & \\ O_{10\times 10} & & & & & \\ O_{10\times 2} & & & & \\ C_4 & O & & \\ C_4 & &$$

Since $\theta_1 r = 0$, we have the following equations :

 $\begin{array}{ll} a_{13}(c_1+d_1)=0, & a_{13}d_2+a_{14}c_1=0, & a_{13}(c_2+d_3)=0, \\ a_{13}d_4+a_{14}c_2=0, & a_{13}c_3+a_{14}d_1=0, & a_{14}(c_3+d_2)=0, \ (1) \\ a_{13}c_4+a_{14}d_3=0, & a_{14}(c_4+d_4)=0, & a_{13}c_1+a_{14}c_3=0, \\ a_{13}c_2+a_{14}c_4=0 & & \end{array}$

From the above equations we have

 $a_{13}^2c_1 - a_{14}^2d_1 = 0$, $a_{13}^2c_2 - a_{14}^2d_3 = 0$, $a_{13}^2(c_1 + d_1) = 0$, $a_{13}^2(c_2 + d_3) = 0$ Thus, we have

$$(a_{13}^2 + a_{14}^2)d_1 = 0, \ (a_{13}^2 + a_{14}^2)d_3 = 0$$

and hence $d_1 = 0$ and $d_3 = 0$. Applying the condition $a_{13} \neq 0$ to the equation (1), we have $c_i = 0, d_i = 0$ for i = 1, 2, 3, 4. Thus, r is a linear combination of the matrices $E_{13,1}, E_{13,2}, E_{14,1}, E_{14,2}$ and by Lemma 2.2, $r \in Soc(S)$.

We also can show that I_1 is the suset of Soc(S) in the second case by applying exactly the same methods as the first case.

We now assume $a_{13} = 0, a_{14} \neq 0$. Since $a_{13} = 0$, from the equation (1) we get the following equations:

$$a_{14}d_1 = 0, \ a_{14}c_2 = 0, \ a_{14}d_3 = 0, \ a_{14}(c_3 + d_2) = 0,$$

$$a_{14}c_3 = 0, \ a_{14}(c_4 + d_4) = 0, \ a_{14}c_1 = 0, \ a_{14}c_4 = 0$$

Since $a_{14} \neq 0$, we have $c_i = 0$, $d_i = 0$ for i = 1, 2, 3, 4 and so $r \in Soc(S)$.

Youngkwon Song

Thus, in all of the three cases, we have $I_1 \subset Soc(S)$. Similarly, we can show $I_2 \subset Soc(S)$. This implies $I_1 + I_2 \subset Soc(S)$. Note that (0) :_S $I_i = J(S)$ for i = 1, 2 and moreover, by Lemma 2.2, Soc(S) is a proper subset of J(S). Therefore, the algebra S doesn't satisfy the condition (1) in Theorem 2.1 and we now conclude the algebra (S, k^{14}) is not a C_1 -construction.

References

- [1] W.C. Brown and F.W. Call, Maximal Commutative Subalgebras of $n \times n$ Matrices. Communications in Algebra, **59(12)** (1993), 4439-4460.
- [2] W.C. Brown, Two Constructions of Maximal Commutative Subalgebras of $n \times n$ Matrices. Communications in Algebra, **22(10)** (1994), 4051-4066.
- [3] R.C. Courter, The Dimension of Maximal Commutative Subalgebras of K_n. Duke Mathematical Journal, **32** (1965), 225-232.
- [4] Youngkwon Song, On the Maximal Commutative Subalgebras of 14 by 14 Matrices. Communications in Algebra, 25(12) (1997), 3823-3840.
- [5] Youngkwon Song, Maximal Commutative Subalgebras of Matrix Algebras. Communications in Algebra, 27(4) (1999), 1649-1663.

Youngkwon Song

Department of Mathematics, Research Institute of Basic Science Kwangwoon University, Seoul 139–701, Korea *E-mail*: yksong@math.kwangwoon.ac.kr