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ON THE C1-CONSTRUCTION

Youngkwon Song

Abstract. In [4], it is proved that the algebra (S, k14) is not a C1-
construction if the field is the real number field. In this paper, we
will introduce a different proof of the fact that the algebra (S, k14)
is not a C1-construction.

1. Introduction

Throughout this paper, k will denote the real number field and Mn(k)
will denote the set of all n× n matrices with entries in k. A commuta-
tive k-subalgebra R of Mn(k) is a maximal, commutative k-subalgebra
of Mn(k) if and only if R satisfies the following condition: If R∗ is a
commutative k-subalgebra of Mn(k) with R ⊂ R∗, then R = R∗. Let
X denote the category whose objects are ordered pairs (G, H), where G
is a finite dimensional, local, commutative k-algebra and H is a finitely
generated, faithful G-module. Let (B, M) ∈ X. The direct sum B ⊕M
of the B-modules B and M can be given the structure of a commutative
k-algebra by defining multiplication in the following way.

(b1, m1)(b2, m2) = (b1b2, m2b1 + m1b2), bi ∈ B, mi ∈ M, i = 1, 2.

The commutative ring thus defined is called the idealization of M and
will be denoted by B on M .

Definition 1.1. Suppose R is a maximal commutative k-subalgebra
of Mn(k). We say R is a (B, N)-construction if R is k-algebra isomorphic
to B on N ` for some (B, N) ∈ X and a positive integer `.

Here, N ` denotes the direct sum of ` copies of B-module N .
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Remark 1.2. The Courter’s algebra R in [1] is a (B, N)-construction.

The B-module B`⊕N is a B on N `-module with scalar multiplication
defined as follows.

(b1, . . . , b`, n)(b, n1, . . . , n`) = (b1b, . . . , b`b, nb +
∑̀
i=1

nibi).

Remark 1.3. For (B, N) ∈ X, it is known that B` ⊕N is a finitely
generated, faithful, B on N `-module.

If (G, H), (G′, H ′) are two objects in X , then a morphism from (G, H)
to (G′, H ′) is an ordered pair (σ, τ), where σ : G −→ G′ is a k-algebra
homomorphism, τ : H −→ H ′ is a k-vector space homomorphism with
τ(hg) = τ(h)σ(g) for all h ∈ H and g ∈ G. We will use the nota-
tion (σ, τ) : (G, H) −→ (G′, H ′) to indicate the morphism (σ, τ) from
(G, H) to (G′, H ′). We call a morphism (σ, τ) : (G, H) −→ (G′, H ′) an
isomorphism if σ is a k-algebra isomorphism and τ is a k-vector space
isomorphism. In this case we will use the notation (G, H) ∼=(σ,τ) (G′, H ′).

Definition 1.4. With the above notations, (G, H) ∈ X is a C1-
construction if (G, H) ∼=(σ,τ) (B on N `, B` ⊕ N) for some (B, N) ∈ X
and a positive integer `.

Remark 1.5. If R is the Courter’s algebra in [1], then (R, k14) is a
C1-construction.

2. Main results

As we have proved in [4], the algebra (S, k14) is a maximal commuta-
tive subalgebra of matrix algebra of size 14 which is not isomorphic to
the Courter’s algebra. Recall that the element r in the Jacobson radical
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of S is the following form :

O2×2 O2×10 O2×2

c1 O
O c1

c2 O
O c2

c3 O
O c3

c4 O
O c4

d1 d2

d3 d4

O10×10 O10×2

e1 e2

e3 e4

c1 + d1 d2 c2 + d3 d4 c3 O c4 O c1 c2

O c1 O c2 d1 c3 + d2 d3 c4 + d4 c3 c4
O2×2


Here, ci, di, ei ∈ k for all i = 1, 2, 3, 4 and the element s in S is the
followong form :

s = r + aIn

for some a ∈ k.
In [4], it is proved the algebra (S, k14) is not a C1-construction if the

field is the real number field. Here, in this section, we will introduce a dif-
ferent proof of the fact that the algebra (S, k14) is not a C1-construction.

The next theorem can be found in [2] and we restate it.

Theorem 2.1. Suppose (R, J(R), k) is a local maximal commutative
subalgebra of matrix algebra of size 14, dimkR = 13 and i(J(R)) = 3.
Then, (R, k14) is a C1-construction if and only if there exist R-module
generators θ1 and θ2 of k14 whose annihilators I1 = AnnR(θ1) and I2 =
AnnR(θ2) satisfy the following three properties:

(1) (0) :R Ii = I1 + I2, i = 1, 2.
(2) (0) → (I1 + I2) → R → R/(I1 + I2) → (0) splits as k-algebras.
(3) There exists an R-module isomorphism f : I1 → I2 such that

θ1f(x) = θ2x for all x ∈ I1.

In [4], we have proved the following Lemma.

Lemma 2.2. Suppose S is the maximal commutative subalgebra in
[4]. Then,

(1) dimkS = 13, i(J(S)) = 3
(2) The minimal number of generators of k14 is 2.
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(3) The socle of S, Soc(S) is generated by E13,1, E13,2, E14,1, E14,2.
Here, Ei,j is a matrix of size 14 whose entries are all zero except the
(i, j)-th entry that is 1.

We now introduce a different proof of the fact that (S, k14) is not a
C1-construction under the real number field.

Theorem 2.3. Let k be the real number field. Suppose S is the
maximal commutative subalgebra in [4]. Then, (S, k14) is not a C1-
construction.

Proof. Let {θ1, θ2} be an arbitrary S-module generator. Then, there
exist ai, bi ∈ k, i = 1, . . . , 14 such that

θ1 =
14∑
i=1

aiεi, θ2 =
14∑
i=1

biεi

Here, {ε1, . . . , ε14} is the standard basis of k14. Now, let Ii = AnnS(θi)
for i = 1, 2. If r ∈ I1, then we can write r = aI14 + r∗ for some a ∈ k
and r∗ ∈ J(S). Thus, we have

θ1a + θ1r
∗ = 0

This implies

a13a = 0, a14a = 0

Note that εi ∈ k14J(S) for i = 1, . . . , 12 and dimk(k
14/k14J(S)) =

2. Thus, {a13ε13 + a14ε14, b13ε13 + b14ε14} is a k-vector space basis of
k14/k14J(S). This implies a13 6= 0 or a14 6= 0 and hence a = 0 and so
r = r∗. Thus, I1 ⊂ J(S) and by the similar way, we get I2 ⊂ J(S).

Now, we want to show that Ii ⊂ Soc(S) for i = 1, 2 by considering
the following three cases :

(case 1) a13 6= 0, a14 6= 0
(case 2) a13 6= 0, a14 = 0
(case 3) a13 = 0, a14 6= 0

We now consider the first case.
If r ∈ I1, then r ∈ J(S) and hence r can be written as follows:
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

O2×2 O2×10 O2×2

c1 O
O c1

c2 O
O c2

c3 O
O c3

c4 O
O c4

d1 d2

d3 d4

O10×10 O10×2

e1 e2

e3 e4

c1 + d1 d2 c2 + d3 d4 c3 O c4 O c1 c2

O c1 O c2 d1 c3 + d2 d3 c4 + d4 c3 c4
O2×2


Since θ1r = 0, we have the following equations :

a13(c1 + d1) = 0, a13d2 + a14c1 = 0, a13(c2 + d3) = 0,
a13d4 + a14c2 = 0, a13c3 + a14d1 = 0, a14(c3 + d2) = 0, (1)
a13c4 + a14d3 = 0, a14(c4 + d4) = 0, a13c1 + a14c3 = 0,
a13c2 + a14c4 = 0

From the above equations we have

a2
13c1 − a2

14d1 = 0, a2
13c2 − a2

14d3 = 0, a2
13(c1 + d1) = 0, a2

13(c2 + d3) = 0

Thus, we have

(a2
13 + a2

14)d1 = 0, (a2
13 + a2

14)d3 = 0

and hence d1 = 0 and d3 = 0. Applying the condition a13 6= 0 to the
equation (1), we have ci = 0, di = 0 for i = 1, 2, 3, 4. Thus, r is a linear
combination of the matrices E13,1, E13,2, E14,1, E14,2 and by Lemma 2.2,
r ∈ Soc(S).

We also can show that I1 is the suset of Soc(S) in the second case by
applying exactly the same methods as the first case.

We now assume a13 = 0, a14 6= 0. Since a13 = 0, from the equation
(1) we get the following equations:

a14d1 = 0, a14c2 = 0, a14d3 = 0, a14(c3 + d2) = 0,

a14c3 = 0, a14(c4 + d4) = 0, a14c1 = 0, a14c4 = 0

Since a14 6= 0, we have ci = 0, di = 0 for i = 1, 2, 3, 4 and so r ∈ Soc(S).
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Thus, in all of the three cases, we have I1 ⊂ Soc(S). Similarly, we
can show I2 ⊂ Soc(S). This implies I1 + I2 ⊂ Soc(S). Note that
(0) :S Ii = J(S) for i = 1, 2 and moreover, by Lemma 2.2, Soc(S) is
a proper subset of J(S). Therefore, the algebra S doesn’t satisfy the
condition (1) in Theorem 2.1 and we now conclude the algebra (S, k14)
is not a C1-construction.
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