ON THE C_{1}-CONSTRUCTION

Youngkwon Song

Abstract

In [4], it is proved that the algebra $\left(S, k^{14}\right)$ is not a C_{1} construction if the field is the real number field. In this paper, we will introduce a different proof of the fact that the algebra $\left(S, k^{14}\right)$ is not a C_{1}-construction.

1. Introduction

Throughout this paper, k will denote the real number field and $M_{n}(k)$ will denote the set of all $n \times n$ matrices with entries in k. A commutative k-subalgebra R of $M_{n}(k)$ is a maximal, commutative k-subalgebra of $M_{n}(k)$ if and only if R satisfies the following condition: If R^{*} is a commutative k-subalgebra of $M_{n}(k)$ with $R \subset R^{*}$, then $R=R^{*}$. Let X denote the category whose objects are ordered pairs (G, H), where G is a finite dimensional, local, commutative k-algebra and H is a finitely generated, faithful G-module. Let $(B, M) \in \mathbf{X}$. The direct sum $B \oplus M$ of the B-modules B and M can be given the structure of a commutative k-algebra by defining multiplication in the following way.

$$
\left(b_{1}, m_{1}\right)\left(b_{2}, m_{2}\right)=\left(b_{1} b_{2}, m_{2} b_{1}+m_{1} b_{2}\right), b_{i} \in B, m_{i} \in M, i=1,2 .
$$

The commutative ring thus defined is called the idealization of M and will be denoted by $B \bowtie M$.

Definition 1.1. Suppose R is a maximal commutative k-subalgebra of $M_{n}(k)$. We say R is a (B, N)-construction if R is k-algebra isomorphic to $B \bowtie N^{\ell}$ for some $(B, N) \in \mathbf{X}$ and a positive integer ℓ.

Here, N^{ℓ} denotes the direct sum of ℓ copies of B-module N.

Received August 5, 2000.
1991 Mathematics Subject Classification: 15A27, 15A33.
Key words and phrases: c_{1}-construction.
The present research has been conducted by the Research Grant of Kwangwoon University in 1999 .

Remark 1.2. The Courter's algebra R in [1] is a (B, N)-construction.

The B-module $B^{\ell} \oplus N$ is a $B \bowtie N^{\ell}$-module with scalar multiplication defined as follows.

$$
\left(b_{1}, \ldots, b_{\ell}, n\right)\left(b, n_{1}, \ldots, n_{\ell}\right)=\left(b_{1} b, \ldots, b_{\ell} b, n b+\sum_{i=1}^{\ell} n_{i} b_{i}\right) .
$$

Remark 1.3. For $(B, N) \in \mathbf{X}$, it is known that $B^{\ell} \oplus N$ is a finitely generated, faithful, $B \bowtie N^{\ell}$-module.

If $(G, H),\left(G^{\prime}, H^{\prime}\right)$ are two objects in \mathbf{X}, then a morphism from (G, H) to $\left(G^{\prime}, H^{\prime}\right)$ is an ordered pair (σ, τ), where $\sigma: G \longrightarrow G^{\prime}$ is a k-algebra homomorphism, $\tau: H \longrightarrow H^{\prime}$ is a k-vector space homomorphism with $\tau(h g)=\tau(h) \sigma(g)$ for all $h \in H$ and $g \in G$. We will use the notation $(\sigma, \tau):(G, H) \longrightarrow\left(G^{\prime}, H^{\prime}\right)$ to indicate the morphism (σ, τ) from (G, H) to $\left(G^{\prime}, H^{\prime}\right)$. We call a morphism $(\sigma, \tau):(G, H) \longrightarrow\left(G^{\prime}, H^{\prime}\right)$ an isomorphism if σ is a k-algebra isomorphism and τ is a k-vector space isomorphism. In this case we will use the notation $(G, H) \cong{ }_{(\sigma, \tau)}\left(G^{\prime}, H^{\prime}\right)$.

Definition 1.4. With the above notations, $(G, H) \in \mathbf{X}$ is a C_{1} construction if $(G, H) \cong_{(\sigma, \tau)}\left(B \bowtie N^{\ell}, B^{\ell} \oplus N\right)$ for some $(B, N) \in \mathbf{X}$ and a positive integer ℓ.

Remark 1.5. If R is the Courter's algebra in [1], then $\left(R, k^{14}\right)$ is a C_{1}-construction.

2. Main results

As we have proved in [4], the algebra $\left(S, k^{14}\right)$ is a maximal commutative subalgebra of matrix algebra of size 14 which is not isomorphic to the Courter's algebra. Recall that the element r in the Jacobson radical
of S is the following form :

Here, $c_{i}, d_{i}, e_{i} \in k$ for all $i=1,2,3,4$ and the element s in S is the followong form :

$$
s=r+a I_{n}
$$

for some $a \in k$.
In [4], it is proved the algebra $\left(S, k^{14}\right)$ is not a C_{1}-construction if the field is the real number field. Here, in this section, we will introduce a different proof of the fact that the algebra $\left(S, k^{14}\right)$ is not a C_{1}-construction.

The next theorem can be found in [2] and we restate it.
Theorem 2.1. Suppose $(R, J(R), k)$ is a local maximal commutative subalgebra of matrix algebra of size 14, $\operatorname{dim}_{k} R=13$ and $i(J(R))=3$. Then, $\left(R, k^{14}\right)$ is a C_{1}-construction if and only if there exist R-module generators θ_{1} and θ_{2} of k^{14} whose annihilators $I_{1}=\operatorname{Ann}_{R}\left(\theta_{1}\right)$ and $I_{2}=$ $\operatorname{Ann}_{R}\left(\theta_{2}\right)$ satisfy the following three properties:
(1) (0) $:_{R} I_{i}=I_{1}+I_{2}, i=1,2$.
(2) (0) $\rightarrow\left(I_{1}+I_{2}\right) \rightarrow R \rightarrow R /\left(I_{1}+I_{2}\right) \rightarrow(0)$ splits as k-algebras.
(3) There exists an R-module isomorphism $f: I_{1} \rightarrow I_{2}$ such that $\theta_{1} f(x)=\theta_{2} x$ for all $x \in I_{1}$.

In [4], we have proved the following Lemma.
Lemma 2.2. Suppose S is the maximal commutative subalgebra in [4]. Then,
(1) $\operatorname{dim}_{k} S=13, i(J(S))=3$
(2) The minimal number of generators of k^{14} is 2 .
(3) The socle of S, $\operatorname{Soc}(S)$ is generated by $E_{13,1}, E_{13,2}, E_{14,1}, E_{14,2}$. Here, $E_{i, j}$ is a matrix of size 14 whose entries are all zero except the (i, j)-th entry that is 1 .

We now introduce a different proof of the fact that $\left(S, k^{14}\right)$ is not a C_{1}-construction under the real number field.

Theorem 2.3. Let k be the real number field. Suppose S is the maximal commutative subalgebra in [4]. Then, $\left(S, k^{14}\right)$ is not a C_{1} construction.

Proof. Let $\left\{\theta_{1}, \theta_{2}\right\}$ be an arbitrary S-module generator. Then, there exist $a_{i}, b_{i} \in k, i=1, \ldots, 14$ such that

$$
\theta_{1}=\sum_{i=1}^{14} a_{i} \epsilon_{i}, \theta_{2}=\sum_{i=1}^{14} b_{i} \epsilon_{i}
$$

Here, $\left\{\epsilon_{1}, \ldots, \epsilon_{14}\right\}$ is the standard basis of k^{14}. Now, let $I_{i}=\operatorname{Ann}_{S}\left(\theta_{i}\right)$ for $i=1,2$. If $r \in I_{1}$, then we can write $r=a I_{14}+r^{*}$ for some $a \in k$ and $r^{*} \in J(S)$. Thus, we have

$$
\theta_{1} a+\theta_{1} r^{*}=0
$$

This implies

$$
a_{13} a=0, a_{14} a=0
$$

Note that $\epsilon_{i} \in k^{14} J(S)$ for $i=1, \ldots, 12$ and $\operatorname{dim}_{k}\left(k^{14} / k^{14} J(S)\right)=$ 2. Thus, $\left\{a_{13} \epsilon_{13}+a_{14} \epsilon_{14}, b_{13} \epsilon_{13}+b_{14} \epsilon_{14}\right\}$ is a k-vector space basis of $k^{14} / k^{14} J(S)$. This implies $a_{13} \neq 0$ or $a_{14} \neq 0$ and hence $a=0$ and so $r=r^{*}$. Thus, $I_{1} \subset J(S)$ and by the similar way, we get $I_{2} \subset J(S)$.

Now, we want to show that $I_{i} \subset \operatorname{Soc}(S)$ for $i=1,2$ by considering the following three cases :
(case 1) $a_{13} \neq 0, a_{14} \neq 0$
(case 2) $a_{13} \neq 0, a_{14}=0$
(case 3) $a_{13}=0, a_{14} \neq 0$

We now consider the first case.
If $r \in I_{1}$, then $r \in J(S)$ and hence r can be written as follows:

Since $\theta_{1} r=0$, we have the following equations :

$$
\begin{array}{lll}
a_{13}\left(c_{1}+d_{1}\right)=0, & a_{13} d_{2}+a_{14} c_{1}=0, & a_{13}\left(c_{2}+d_{3}\right)=0, \\
a_{13} d_{4}+a_{14} c_{2}=0, & a_{13} c_{3}+a_{14} d_{1}=0, & a_{14}\left(c_{3}+d_{2}\right)=0,(1) \\
a_{13} c_{4}+a_{14} d_{3}=0, & a_{14}\left(c_{4}+d_{4}\right)=0, & a_{13} c_{1}+a_{14} c_{3}=0, \\
a_{13} c_{2}+a_{14} c_{4}=0 & &
\end{array}
$$

From the above equations we have
$a_{13}^{2} c_{1}-a_{14}^{2} d_{1}=0, a_{13}^{2} c_{2}-a_{14}^{2} d_{3}=0, a_{13}^{2}\left(c_{1}+d_{1}\right)=0, a_{13}^{2}\left(c_{2}+d_{3}\right)=0$
Thus, we have

$$
\left(a_{13}^{2}+a_{14}^{2}\right) d_{1}=0,\left(a_{13}^{2}+a_{14}^{2}\right) d_{3}=0
$$

and hence $d_{1}=0$ and $d_{3}=0$. Applying the condition $a_{13} \neq 0$ to the equation (1), we have $c_{i}=0, d_{i}=0$ for $i=1,2,3,4$. Thus, r is a linear combination of the matrices $E_{13,1}, E_{13,2}, E_{14,1}, E_{14,2}$ and by Lemma 2.2, $r \in \operatorname{Soc}(S)$.

We also can show that I_{1} is the suset of $\operatorname{Soc}(S)$ in the second case by applying exactly the same methods as the first case.

We now assume $a_{13}=0, a_{14} \neq 0$. Since $a_{13}=0$, from the equation (1) we get the following equations:

$$
\begin{aligned}
& a_{14} d_{1}=0, a_{14} c_{2}=0, a_{14} d_{3}=0, a_{14}\left(c_{3}+d_{2}\right)=0 \\
& a_{14} c_{3}=0, a_{14}\left(c_{4}+d_{4}\right)=0, a_{14} c_{1}=0, a_{14} c_{4}=0
\end{aligned}
$$

Since $a_{14} \neq 0$, we have $c_{i}=0, d_{i}=0$ for $i=1,2,3,4$ and so $r \in \operatorname{Soc}(S)$.

Thus, in all of the three cases, we have $I_{1} \subset \operatorname{Soc}(S)$. Similarly, we can show $I_{2} \subset \operatorname{Soc}(S)$. This implies $I_{1}+I_{2} \subset \operatorname{Soc}(S)$. Note that (0) $:_{S} I_{i}=J(S)$ for $i=1,2$ and moreover, by Lemma 2.2, $\operatorname{Soc}(S)$ is a proper subset of $J(S)$. Therefore, the algebra S doesn't satisfy the condition (1) in Theorem 2.1 and we now conclude the algebra (S, k^{14}) is not a C_{1}-construction.

References

[1] W.C. Brown and F.W. Call, Maximal Commutative Subalgebras of $n \times n$ Matrices. Communications in Algebra, 59(12) (1993), 4439-4460.
[2] W.C. Brown, Two Constructions of Maximal Commutative Subalgebras of $n \times n$ Matrices. Communications in Algebra, 22(10) (1994), 4051-4066.
[3] R.C. Courter, The Dimension of Maximal Commutative Subalgebras of K_{n}. Duke Mathematical Journal, 32 (1965), 225-232.
[4] Youngkwon Song, On the Maximal Commutative Subalgebras of 14 by 14 Matrices. Communications in Algebra, 25(12) (1997), 3823-3840.
[5] Youngkwon Song, Maximal Commutative Subalgebras of Matrix Algebras. Communications in Algebra, 27(4) (1999), 1649-1663.

Youngkwon Song
Department of Mathematics, Research Institute of Basic Science
Kwangwoon University, Seoul 139-701, Korea
E-mail: yksong@math.kwangwoon.ac.kr

