TYPICALLY REAL HARMONIC FUNCTIONS

Sook Heui Jun

ABSTRACT. In this paper, we study harmonic orientation-preserving univalent mappings defined on $\Delta = \{z: |z| > 1\}$ that are typically real.

1. Introduction

A continuous function f = u + iv defined in a domain $D \subseteq \mathbb{C}$ is harmonic in D if u and v are real harmonic in D. Let Σ be the class of all complex-valued, harmonic, orientation-preserving, univalent mappings f defined on $\Delta = \{z : |z| > 1\}$, that are normalized at infinity by $f(\infty) = \infty$. Such functions admit the representation

$$f(z) = h(z) + \overline{g(z)} + Alog|z|,$$

where

$$h(z) = \alpha z + \sum_{k=0}^{\infty} a_k z^{-k}$$
 and $g(z) = \beta z + \sum_{k=1}^{\infty} b_k z^{-k}$

are analytic in Δ and $0 \le |\beta| < |\alpha|$. In addition, $a = \overline{f_z}/f_z$ is analytic and satisfies |a(z)| < 1. Also one can easily show that $|A|/2 \le |\alpha| + |\beta|$ by using the bound $|s_1| \le 1 - |s_0|^2$ for analytic function $a = s_0 + s_1 z^{-1} + \cdots$ in Δ that are bounded by one. By applying an affine postmapping to f we may normalize f so that $\alpha = 1, \beta = 0$, and $a_0 = 0$. Therefore let Σ' be the set of all harmonic, orientation-preserving, univalent mappings

(1.1)
$$f(z) = h(z) + \overline{g(z)} + Alog|z|$$

Received June 9, 2000.

1991 Mathematics Subject Classification: 30C45, 30C50.

Key words and phrases: Harmonic, typically real functions.

This work was supported by the research fund of Seoul Women's University, 1999.

of Δ , where

$$h(z) = z + \sum_{k=1}^{\infty} a_k z^{-k}$$
 and $g(z) = \sum_{k=1}^{\infty} b_k z^{-k}$

are analytic in Δ and $A \in \mathbb{C}$. Hengartner and Schober [2] used the representation (1.1) to obtain coefficient bounds and distortion theorems. In this article, we study functions in Σ' that are typically real.

2. Typically real functions

A function f harmonic in Δ is said to be typically real if f(z) is real if, and only if, z is real. To obtain growth conditions we will further assume that f is orientation-preserving, univalent in Δ . If $f = h + \overline{g} + Alog|z|$ with $f(\infty) = \infty$ we suppose that $|g'(z) + \overline{A}/(2z)| < |h'(z) + A/(2z)|$ and $h(z) \neq g(z)$ for all $z \in \Delta$, $\alpha = 1, \beta = 0$, and $a_0 = 0$. The class of such functions is denoted by T. The subclass of T with real A is denoted by T_R :

$$T = \{ f \in \Sigma' : f \text{ is typically real and } h(z) \neq g(z) \text{ for all } z \in \Delta \}.$$

THEOREM 2.1. Let $f \in \Sigma$. If A and coefficients are real, then f is typically real.

Proof. For $\overline{f(z)}=f(\overline{z})$ and so $\overline{f(z)}=f(z)$ if, and only if, $z=\overline{z}$ because of the univalence. \Box

LEMMA 2.2. Let $H(z) = z + \sum_{k=0}^{\infty} s_k z^{-k}$ be analytic and typically real in Δ , with $H(z) \neq 0$ for all $z \in \Delta$. Then the function G defined by

$$G(\zeta) = \{H(1/\zeta)\}^{-1}$$

is analytic and typically real in the unit disk $\mathbb{D} = \{\zeta : |\zeta| < 1\}.$

Proof. $\overline{G(\zeta)} = G(\zeta)$ if, and only if, $\overline{H(1/\zeta)} = H(1/\zeta)$. $\overline{H(1/\zeta)} = H(1/\zeta)$ if, and only if, $\zeta = \overline{\zeta}$ since H is typically real. Thus G is analytic and typically real in the unit disk \mathbb{D} .

Remark. Note that $\operatorname{Im}\{G(\zeta)\} > 0$ when $\operatorname{Im}\{\zeta\} > 0$, and $\operatorname{Im}\{G(\zeta)\}\$ < 0 when $\operatorname{Im}\{\zeta\}\$ < 0, because G(0)=0 and G'(0)=1 give G these properties near the origin. Also, it is clear that the typically real function $G(\zeta) = \zeta + \sum_{k=2}^{\infty} r_k \zeta^k$ in \mathbb{D} has real coefficients, because $r_k = G^{(k)}(0)/k!$. Thus one can easily show the following Lemma by using the relation $G(\zeta) = \{H(1/\zeta)\}^{-1}$.

LEMMA 2.3. Let $H(z) = z + \sum_{k=0}^{\infty} s_k z^{-k}$ be analytic and typically real in Δ , with $H(z) \neq 0$ for all $z \in \Delta$. Then H(z) has real coefficients and

$$Im\{H(z)\} = \begin{cases} > 0 & \text{if } Im\{z\} > 0 \\ < 0 & \text{if } Im\{z\} < 0. \end{cases}$$

LEMMA 2.4. Let $f \in T_R$. Then

(1) the analytic function h(z) - g(z) is typically real and has real coefficients,

(2)
$$Im\{h(re^{i\theta}) - g(re^{i\theta})\} = \begin{cases} > 0 & (0 < \theta < \pi) \\ < 0 & (-\pi < \theta < 0), \end{cases}$$

(3) $Im\{f(re^{i\theta})\} = \begin{cases} > 0 & (0 < \theta < \pi) \\ < 0 & (-\pi < \theta < 0), \end{cases}$

(3)
$$Im\{f(re^{i\theta})\} = \begin{cases} > 0 & (0 < \theta < \pi) \\ < 0 & (-\pi < \theta < 0). \end{cases}$$

Proof. The analytic function $h(z) - g(z) = z + \sum_{k=1}^{\infty} (a_k - b_k) z^{-k}$ is typically real since $\operatorname{Im}\{f(z)\} = \operatorname{Im}\{h(z) - g(z)\}$ and f is typically real. By Lemma 2.3, h(z) - g(z) has real coefficients and

$$\operatorname{Im}\{f(re^{i\theta})\} = \operatorname{Im}\{h(re^{i\theta}) - g(re^{i\theta})\} = \begin{cases} > 0 & (0 < \theta < \pi) \\ < 0 & (-\pi < \theta < 0). \end{cases}$$

Let us mention the following result for the typically real function in the unit disk \mathbb{D} from [1].

Lemma 2.5[1, Theorem 2.21]. If the analytic function

$$G(\zeta) = \zeta + \sum_{k=2}^{\infty} r_k \zeta^k$$

is typically real in the unit disk \mathbb{D} , then $|r_{k+2}-r_k| \leq 2$, $k=0,1,2,\ldots$

Theorem 2.6. For each f of T_R we have

$$|a_1 - b_1| \le 3$$
, $|a_2 - b_2| \le 2$, $|a_3 - b_3| \le 8$,
 $|a_4 - b_4| \le 12$, $|a_5 - b_5| \le 28$, $|a_6 - b_6| \le 52$.

Proof. Let $H(z) = h(z) - g(z) = z + \sum_{k=1}^{\infty} s_k z^{-k}$, where $s_k = a_k - b_k$, and $G(\zeta) = \{H(1/\zeta)\}^{-1}$. Then $G(\zeta)$ is analytic and typically real in $\mathbb D$ by Lemma 2.4 and Lemma 2.2. Since

$$G(\zeta) = \zeta - s_1 \zeta^3 - s_2 \zeta^4 + (s_1^2 - s_3) \zeta^5 + (2s_1 s_2 - s_4) \zeta^6 + (2s_1 s_3 - s_5 + s_2^2 - s_1^3) \zeta^7 + (2s_2 s_3 + 2s_1 s_4 - s_6 - 3s_1^2 s_2) \zeta^8 + \cdots,$$

we obtain coefficient bounds by Lemma 2.5.

References

- 1. P. Duren, Univalent functions, Springer-Verlag, 1983.
- 2. W. Hengartner and G. Schober, *Univalent harmonic functions*, Trans. Amer. Math. Soc. **299** (1987), 1-31.

Department of Mathematics Seoul Women's University 126 Kongnung 2-dong, Nowon-Gu Seoul, 139-774, Korea