REMARKS ON GAUSSIAN OPERATOR SEMI-STABLE DISTRIBUTIONS

HONG CHUL CHAE AND GYEONG SUK CHOI

ABSTRACT. For a linear operator Q from R^d into R^d , $\alpha > 0$ and 0 < b < 1, the Gaussian (Q, b, α) -semi-stability of probability measures on R^d is investigated.

1. Introduction

Let \mathbb{R}^d be the d-dimensional Euclidean space. In [2], one of the authors obtained the complex characterization of Gaussian operator semi-stable distribution on \mathbb{R}^d . In this paper, we consider a description for Gaussian operator semi-stable distribution in a real form.

We will use some notation. $\mathcal{B}(R^d)$ is the collection of Borel sets in R^d . $\mathcal{P}(R^d)$ is the collection of probability measures (distributions) defined on $\mathcal{B}(R^d)$. $\widehat{\mu}(z)$, $z \in R^d$ is the characteristic function of $\mu \in \mathcal{P}(R^d)$. $End(R^d)$ is the set of linear operators from R^d into R^d . The identity operator is denoted by I. We denote Euclidean norm of x by |x| and Euclidean inner product of x and y by $\langle x, y \rangle$. For $B \in End(R^d)$ and r > 0, we define $r^B = \exp\{B \log r\} = \sum (B \log r)^n/n!$. Let $I(R^d)$ be the collection of infinitely divisible distributions defined on $\mathcal{B}(R^d)$. We denote the b-th convolution power of $\mu \in I(R^d)$ by μ^b . The class of linear operators on R^d whose eigenvalues have positive real parts is denoted by $M_+(R^d)$.

Fix $\alpha > 0$ and $Q \in M_+(R^d)$. A distribution $\mu \in \mathcal{P}(R^d)$ is called (Q, b, α) -semi-stable if $\mu \in I(R^d)$ and there are a number $b \in (0, 1)$ and a vector $c(b) \in R^d$ such that

$$\mu^{b^{\alpha}} = b^{Q} \mu * \delta_{c(b)}.$$

Received May 17, 2000.

¹⁹⁹¹ Mathematics Subject Classification: 60E07.

Key words and phrases: Infinite divisibility, operator semi-stability, semi stability, operator stability.

Here $\delta_{c(b)}$ is the delta distribution at c(b). It is called *strictly* (Q, b, α) semi-stable if there is $b \in (0, 1)$ such that

$$\mu^{b^{lpha}} = b^Q \mu.$$

The relationship between the class of (Q, b, α) -semi-stable distributions and that of strictly (Q, b, α) -semi-stable distributions has been discussed in [3]. Note that the class of (Q, b, α) -semi-stable Gaussian distributions on \mathbb{R}^d is a proper subclass of Gaussian operator semi-stable distributions on \mathbb{R}^d . See [7].

Our results of this paper are generalizations of some results in [8,9] to operator semi-stable case. These results are got by using the same manners as are done for operator stable distributions in [8].

Preliminary results are given in Section 2 and we write our results in Section 3. Proofs are given in Section 4.

2. Preliminaries

Let $B=b^Q$. For $x\in C^d$, \overline{x} stands for the complex conjugate of x, that is, each component of \overline{x} is the complex conjugate of the corresponding component of x. Let $\vartheta_1,\ldots,\vartheta_{q+2r}, (1\leq j\leq q+2r)$ be all distinct eigenvalues of B, where q is the number of distinct real eigenvalues and 2r is the number of distinct non-real eigenvalues of $B(q\geq 0,2r\geq 0)$. Let $\vartheta_j=\sigma_j+i\rho_j$ with σ_j and ρ_j being real. Let $f(\xi)$ be the minimal polynomial of B such that

$$f(\xi) = (\xi - \vartheta)^{m_1} \dots (\xi - \vartheta_{q+2r})^{m_{q+2r}}.$$

Then

$$f(\xi) = f_1(\xi)^{m_1} \dots f_{q+r}(\xi)^{m_{q+r}},$$

where

$$f_j(\xi) = \begin{cases} \xi - \vartheta_j & \text{for } 1 \le j \le q \\ (\xi - \sigma_j)^2 + {\rho_j}^2 & \text{for } q + 1 \le j \le q + r. \end{cases}$$

We write W_j for the kernel of $f_j(B)^{m_j}$ in R^d , $1 \leq j \leq q + r$. The projector onto W_j in the direct sum decomposition

$$R^d = W_1 \oplus \cdots \oplus W_{q+r}$$

is written by U_i . Denote

$$V_j = \text{Kernel}(B - \vartheta_j)^{m_j}$$
 in C^d , $1 \le j \le q + 2r$.

Then we have that

(2.1)
$$C^d = V_1 \oplus \cdots \oplus V_{q+2r}.$$

Let T_j be the projector onto V_j in the decomposition (2.1). We denote the adjoint of a linear operator T by T'. Set

$$W'_j = \operatorname{Kernel} f_j(B')^{m_j}$$
 in R^d for $1 \leq j \leq q+r$

and

$$V'_j = \text{Kernel}(B' - \overline{\vartheta_j})^{m_j}$$
 in C^d for $1 \le j \le q + 2r$.

Then we have

(2.2)
$$C^d = V_1' \oplus \cdots \oplus V_{q+2r}'$$

and

$$(2.3) R^d = W_1' \oplus \cdots \oplus W_{q+r}'.$$

We see that V'_j and V_k are orthogonal for $j \neq k$ and T'_j is the projector of C^d onto V'_j in the decomposition (2.2).

We set

$$\Lambda = \{j: 1 \leq j \leq q+r \quad \text{satisfying} \quad |\vartheta_j| < b^{1/2}\}.$$

Let $W_{\Lambda} = \bigoplus_{j \in \Lambda} W_j$, let $S_{\Lambda} = \{x \in W_{\Lambda} : |x|_Q \leq 1 \text{ and } |B^{-1}x|_Q > 1\}$ and $\mathcal{B}(S_{\Lambda})$ as the class of Borel set in S_{Λ} . Here $|\cdot|_Q$ is the norm such that

$$|x|_Q = \int_0^1 \frac{|u^Q x|}{u} du, \quad x \in \mathbb{R}^d.$$

The reason that we use the norm $|\cdot|_Q$ is given in [7]. It is well-known that $\mu \in I(\mathbb{R}^d)$ is infinitely divisible if and only if $\widehat{\mu}(z)$ has form

$$\widehat{\mu}(z) = \exp \left\{ i \langle \gamma, z \rangle - \frac{1}{2} \langle Az, z \rangle + \int_{\mathbb{R}^d} G(z, x) \nu(dx) \right\},$$

where $G(z,x) = e^{i\langle z,x\rangle} - 1 - i\langle z,x\rangle(1+|x|^2)^{-1}$, γ is a vector in \mathbb{R}^d , A is a symmetric nonnegative definite operator and ν is a measure (called Lévy measure μ) on \mathbb{R}^d satisfying $\nu(\{0\}) = 0$ and

$$\int |x|^2 (1+|x|^2)^{-1} \nu(dx) < \infty.$$

This representation is unique and called the Lévy representation (γ , A, ν). We call μ a purely non-Gaussian in the case of A = 0. If $\gamma = 0$ and A = 0, then we call μ a centered purely non-Gaussian. If $\gamma = 0$ and $\nu = 0$, then μ is called a centered Gaussian. In [4], we note that recurrence and transience of Lévy process on \mathbb{R}^2 associated with (Q, b, α) -semi-stable distribution depend on whether it is centered Gaussian or not. For a real symmetric nonnegative definite operator A, $\phi_A(z)$ stands for $\langle Az, z \rangle$. Here $\langle \cdot \rangle$ denotes the Hermitian inner product on C^d . Let $J = \{j : 1 \le j \le q + 2r, |\vartheta_j|^2 = b^\alpha\}$. The following proposition is obvious from the results of Luczak in [5,6] and Theorem 3.1 in [2].

PROPOSITION 2.1. Fix $b \in (0,1)$, $\alpha > 0$ and $Q \in M_+(\mathbb{R}^d)$. Let $\mu \in I(\mathbb{R}^d)$ with the Lévy representation (γ, A, ν) . Then μ is (Q, b, α) semi-stable if and only if

(2.4)
$$AT'_{j} = 0 \quad \text{for all} \quad j \notin J,$$

(2.4)
$$AT'_{j} = 0 \quad \text{for all} \quad j \notin J,$$
(2.5)
$$(B - \vartheta_{j})AT'_{j} = 0 \quad \text{for all} \quad j \in J,$$

$$\nu(E) = \int_{S_{\Lambda}} \sum_{n=-\infty}^{n=\infty} b^n I_E(B^{-n}x) \nu_0(dx), \quad E \in \mathcal{B}(\mathbb{R}^d),$$

where ν_0 is a finite Borel measure on S_{Λ} .

3. Results

Denote $N_j = \mathrm{Ker} f_j(B)$ in \mathbb{R}^d , $1 \leq j \leq q+r$. Then for each j, N_j is a linear subspace of the space W_i . We set

$$J_0 = \{ j \in J : 1 \le j \le q + r \}.$$

Define $N_{J_0} = \bigoplus_{j \in J_0} N_j$. If J_0 is empty, then let $N_{J_0} = \{0\}$.

THEOREM 3.1. Fix $b \in (0,1)$, $\alpha > 0$ and $Q \in M_+(\mathbb{R}^d)$. Let μ be a (Q, b, α) -semi-stable centered Gaussian distribution, then

(3.1) Spt
$$\mu$$
 is a B-invariant subspace of N_{J_0}

and there uniquely exist centered Gaussian distributions μ_j , $j \in J_0$ such that Spt $\mu_j \subset N_j$ for $j \in J_0$, and

(3.2)
$$\mu = *_{j \in J_0} \mu_j.$$

Where these distributions μ_j , $j \in J_0$, are (Q, b, α) -semi-stable.

THEOREM 3.2. Fix $b \in (0,1)$, $\alpha > 0$ and $Q \in M_+(R^d)$. Let $\sqrt{b^{\alpha}}$ be an eigenvalue of B and let $j \in J_0$ such that $\vartheta_j = \sqrt{b^{\alpha}}$. Then any centered Gaussian distribution μ with Spt $\mu \subset N_j$ is (Q,b,α) -semistable.

For every $j(1 \leq j \leq q + 2r)$, we can choose $l_j \geq 1$, $z_{jl} \in V'_j$ and $n_{jl} \geq 1$ such that $(B' - \overline{\vartheta_j})^{n_{jl}} z_{jl} = 0$ and the system

$$\{z_{jln} = (B' - \overline{\vartheta_j})^{n-1} z_{jl} : 1 \le l \le l_j, 1 \le n \le n_{jl}\}$$

is basis of V_j' . Let us pick real z_{jl} for $1 \leq j \leq q$ so that $\{z_{jln}: 1 \leq l \leq l_j, 1 \leq n \leq n_{jl}\}$ is basis of W_j' . For $q+1 \leq j \leq q+r$, we have that $l_j = l_{j+r}$ and $n_{jl} = n_{j+r,l}$. We choose $z_{jl} \in V_j'$ for $q+1 \leq j \leq q+r$, $1 \leq l \leq l_j$ and define $z_{j+r,l}$ by $z_{j+r,l} = \overline{z_{jl}}$. Let u_{jln} and v_{jln} be the real and the imaginary part of z_{jl} , respectively for $q+1 \leq j \leq q+r$. Then we see that $\{u_{jln}, v_{jln}: 1 \leq l \leq l_j, 1 \leq n \leq n_{jl}\}$ is basis of W_j' . Let $J_1 = \{j \in J: 1 \leq j \leq q\}$ and let $J_2 = \{j \in J: q+1 \leq j \leq q+r\}$.

THEOREM 3.3. Fix $b \in (0,1)$, $\alpha > 0$ and $Q \in M_+(\mathbb{R}^d)$. Let $\mu \in I(\mathbb{R}^d)$ with the Lévy representation $(\gamma, A, 0)$. Then μ is (Q, b, α) -semi-

stable if and only if the following five conditions are satisfied:

(3.3)
$$\phi_{A}(z) = 0$$
 for $z \in W'_{j}$ $j \notin J_{0}$;
(3.4) $\langle Az, w \rangle = 0$ for $z \in W'_{j}$, $w \in W'_{k}$, $j \in J_{0}, k \in J_{0}$, $j \neq k$;
(3.5) $\phi_{A}(z_{jln}) = 0$ for $j \in J_{1}$, $1 \leq l \leq l_{j}$, $2 \leq n \leq n_{jl}$;
(3.6) $\phi_{A}(u_{jln}) = \phi_{A}(v_{jln})$ for $j \in J_{2}$, $1 \leq l \leq l_{j}$, $2 \leq n \leq n_{jl}$;
(3.7) $\langle Au_{jl1}, u_{jm1} \rangle = \langle Av_{jl1}, v_{jm1} \rangle$ and $\langle Au_{jl1}, v_{jm1} \rangle = -\langle Av_{jl1}, u_{jm1} \rangle$
for $j \in J_{2}$, $1 \leq l \leq l_{j}$ $1 \leq m \leq l_{j}$ $(l = m \text{ inclusive})$.

THEOREM 3.4. Fix $b \in (0,1)$, $\alpha > 0$ and $Q \in M_+(R^d)$. Fix j such that $j \in J_0$ and $q+1 \leq j \leq q+r$. Let μ be a centered Gaussian distribution with covariance operator A with Spt $\mu \subset N_j$. If

(3.8)
$$\langle Au_{jl1}, u_{jm1} \rangle = \langle Av_{jl1}, v_{jm1} \rangle$$
 and $\langle Au_{jl1}, v_{jm1} \rangle$
= $-\langle Av_{jl1}, u_{jm1} \rangle$ for all l and $m(l = m$ inclusive),

then μ is (Q, b, α) - semi-stable.

4. Proofs

For the proof of Theorem 3.1,we need the following lemma.

LEMMA 1. Fix $b \in (0,1)$, $\alpha > 0$ and $Q \in M_+(R^d)$. Let μ be (Q, b, α) -semi-stable on R^d , and let T be a linear operator on R^d which commutes with Q. Then $T\mu$ is (Q, b, α) -semi-stable on R^d .

Proof. From the assumption that TQ = QT, we see that

$$\widehat{T\mu}(z)^{b^{\alpha}} = \widehat{\mu}(T'z)^{b^{\alpha}} = \widehat{\mu}(b^{Q'}T'z)e^{i\langle c(b), T'z\rangle}$$

$$= \widehat{\mu}(T'b^{Q'}z)e^{i\langle c(b), T'z\rangle} = \widehat{T\mu}(b^{Q'}z)e^{i\langle Tc(b), z\rangle}.$$

Proof of Theorem 3.1. Suppose that μ is a (Q, b, α) -semi-stable distribution with Lévy representation (0, A, 0). Define $A_j = U_j A U'_j$ for $j \in J_0$. From the fact that

$$(4. 1) U_k A U_j' = 0 for j \neq k$$

and

$$AU'_j = 0$$
 for $j \notin J_0$,

we see that

(4.2)
$$A = \sum_{k,j=1}^{q+r} U_k A U'_j = \sum_j U_j A U'_j = \sum_{j \in J_0} A_j.$$

For $j \in J_0$, we see that $U_j A = A_j$ and $AU'_j = A_j$ by (4.1) and (4.2). Let μ_j be the centered Gaussian distribution with covariance A_j . Then (4.2) is (3.2). Noting that

$$\widehat{\mu_j}(z) = \exp\{-\frac{1}{2}\langle Az, z\rangle\} = \widehat{\mu}(U_j'z),$$

we see that $\mu_j = U_j \mu$. Hence μ_j is (Q, b, α) -semi-stable by Lemma 1, since $QU_j = U_j Q$ on R^d for $1 \leq j \leq q + r$. Using the same method in Theorem 4.2 of [9], we see that $A_j(R^d)$ is a B-invariant linear subspace of N_j .

Let us show the uniqueness of the decomposition (3.1) and (3.2). Let $\mu_j, j \in J_0$, be centered Gaussian distributions satisfying (3.1) and (3.2), and let B_j be the covariance operator of μ_j . Then $A = \sum_{j \in J_0} B_j$ and $B_j(R^d) = \operatorname{Spt} \mu \subset N_j$. Thus we have that $U_jB_j = B_j$ and $U_kB_j = 0$ for $j \neq k$. Hence $U_jA = B_j$ for $j \in J_0$.

Proof of Theorem 3.2. Suppose that μ is a (Q, b, α) -semi-stable distribution with Lévy representation (0, A, 0). Then we see that $\operatorname{Spt} \mu = A(R^d)$ by Lemma 4.2 in [9]. Using the fact that $\operatorname{Spt} \mu \subset N_j$, we get $AT'_k = 0$ for $j \neq k$. Since $\operatorname{Spt} \mu \subset N_j$, $(B - \vartheta_j)A = 0$, which gives that $(B - \vartheta_j)AT'_j = 0$. Hence we show (Q, b, α) -semi-stability of μ by Proposition 2.1.

Proof of Theorem 3.3. Suppose that μ is a (Q, b, α) -semi-stable distribution with Lévy representation (0, A, 0). Then the conditions (2.4) and (2.5) lead to (3.3) and (3.4). From (2.5), we get (3.5) and (3.6). We note that $\langle Az_{jl1}, \overline{z_{jm1}} \rangle = \langle Au_{jl1}, u_{jm1} \rangle - \langle Av_{jl1}, v_{jm1} \rangle + i\langle Au_{jl1}, v_{jm1} \rangle + \langle Av_{jl1}, u_{jm1} \rangle$, where $u_{jl1} + iv_{jm1} = z_{jl1} \in V'_j$ and $u_{jl1} - iv_{jm1} = \overline{z_{jl1}} \in V'_{j+r}$. Using this and (2.5), we also get (3.7).

Conversely, suppose that A satisfies (3.3),(3.4),(3.5),(3.6) and (3.7). In case $j \notin J$, we see that Az = 0 for $z \in V'_j$ by (3.3). Hence we get (2.4). In case $j \in J$, we can prove (2.5) by the same proof as that of Theorem 4.1 of [9].

Proof of Theorem 3.4. Let $z \in W'_k$, $k \neq j$. Then we have $Az \in N_j \subset W_j$. So Az = 0, since W_j and W'_k are orthogonal. Hence (3.3), (3.4) and (3.5) hold. Let $j \in J_2$ and $x \in N_j$. Then $(B - \vartheta_j)(B - \overline{\vartheta_j})x = 0$. Hence there are x_1 and x_2 in C^d such that $x = x_1 + x_2$, $(B - \vartheta_j)x_1 = 0$ and $(B - \overline{\vartheta_j})x_2 = 0$. For $n \geq 2$, we have $\langle x_1, z_{jln} \rangle = 0$ and $\langle x_2, z_{jln} \rangle = 0$. Hence $\langle x, z_{jln} \rangle = 0$. Thus (3.6) is proved. By the above hypothesis, (3.7) also holds. Thus μ is (Q, b, α) -semi-stable.

References

- Choi G.S., Criteria for recurrence and transience of semistable processes, Nagoya Math.J. 134 (1994), 91-106.
- 2. Choi, G.S, Representation of operator semi-stable distributions, Bull. Korean. Math. Soc., 37 No.1 (2000), 135-152.
- 3. Choi, G.S, Characterization of strictly operator semi-stable distributions, preprint.
- 4. Choi, G.S. and Sato, K., Recurrence and transience of operator semi-stable processes, Proc. Japan Acad. 71 Ser A (1995), 87-89.
- Łuczak, A., Operator semi-stable probability measures on R^d, Colloq. Math. 45 (1981), 287-300 ;Corrigenda, 52 (1987), 167-169
- 6. Łuczak, A., Operator semi-stable Lévy measures on finite dimensional vector spaces, Probab. Theory. Fields 90 (1991), 317-340.
- 7. Maejima, M., Sato, K. and Watanabe, T., Completely operator-semi-self decomposable distributions, Tokyo J. Math, to appear.
- 8. Sato, K., Lectures on multivariate infinitely divisible distributions and operator-stable processes., Technical Report Series, Lab. Res. Statist. Probab. Carleton Unvi. and Univ Ottawa, No.54, 1985.

9. Sato, K. and Yamazato, M., Completely operator-selfdecomposable distributions and operator-stable distributions, Nagoya. Math.J. 97 (1985), 71-94.

Hong Chul Chae
School of Information Communication Engineering
Kyungdong University
Goseong, Kangwon, 219-830 Korea
E-mail: chae@kyungdong.co.kr

Gyeong Suk Choi Department of mathematics Kangwon National University Chunchen, 200-701 Korea