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Input conductance of neuron for Hopfield Neural

Networks
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ABSTRACT

This paper discusses the influence of the input conductance on system stability for the continuous type Hopfield

Neural Networks.. The input conductance is connected from the neuron input to ground. The input conductance has

been proved to effect on stability in input space. Transient analysis is used to test the stability in input space. Also,

it has been studied how to adjust the input conductance for improving the system's performance.
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I . Introduction

It has been shown that transients in a network of
connected processors with sigmoidal voltage transfer
characteristics converge to a stable minimum of its

computational energy, i.e. the Lyapunov function for the
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network[1,2]. Since then, Hopfield type neural networks
have been applied in solving problems in many areas
such as associative memory, pattern recognition, and
optimization problems. In implementing such application
circuits, there often happens some problems; one of
them is to select values for input conductance and
capacitance of neuron. The input conductance of neuron
is represented in the circuit by a resistor of value ri =

1/gi and an input capacitor ci connected in parallel from

the neuron input to ground[3]. These components have
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been known partially to define the time constant of the
neuron and to provide for the integrative analog
summation of the synaptic input currents from other
neurons in the networks. However, they have not been
reported how to choose the value of them.

In this paper, we investigate the influence of the
input conductance on system stability. It has been shown
that the stability of input space depends on the value of
input conductance. Transient analysis is used to test the
stability in input space. Also, it has been studied how
to adjust the input conductance for improving the
system's performance. To solve the minimization
problem using Hopfield type neural networks, the
objective function which is to be minimized should be
matched to the first two term of energy function. The
usual method for ignoring the third term of energy
function is to use a high sigmoid gain. However, as a
sigmoid gain increases, the output of neuron becomes
discrete. Therefore, we discuss new method for ignoring
the third term of energy function by adjusting the input
conductances, with this method any sigmoid gain can be

used.

. Hopfield Model for Neural Networks

In this paper, we are going to discuss about
Hopfield type neural networks as shown in Fig. 1.
Using KCL(Kirchoff Current Law) at the input of the

neuron, the following equation can be obtained{3]
o = Bwti—(Bwgtedu, W
i=1,...,n
¢; represents the nonzero input capacitance of the
ith neuron. Similarly, gi represents the input conductance
between the ith neuron input and ground. Conductance
wij connects the output of the jth neuron to the input

of ith neuron. Current ii is the bias comming current

into the ith neuron input. Also, each neuron maps its
input voltage ui into the output voltage vi through the
activaton function A #;). Usually the following sigmoid

function is used for the activation function as

1
) = —— 2
Ruy) l+e ™ 2)

Denoting the total conductance connected to the ith

neuron input node as Gi, where

Gi= lezj+gi (3)
Equation(1) can be simplified {0 the form of a
single state equation as

du; . .
c,———dZ;’ = 2 wiv;tii—Gu;, i=1,...,n 4
=1

9y
uiH }-]“2 .ooo“n»—‘ }—A|
c. [ ¢

Fig. 1. The Electrical model of Continuous type
Hopfield Neural networks

Let ug introduce the matrices ¢ and G defined as

c=diaglc, ¢y, ..., c,] and

G=diagl G,, G, ....,G,) and arrange ui(t),vi(t),
and ii in n-dimensional column state vector u(t), output
vector v(t), and bias current vector i. The final
equations of the entire model network consisting of the
state equation written in matrix form can now be
expressed as

c—% =wo(H+i— Gu(d (5)

Hopfield(1984) has introduced the energy function
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E(v) which is defined by(3]

E(U)=—%vtwv — v+ Gfovsf_l(z)ciz (6)

And, the negative differentiate of equation (6), that
is, decreasing energy function, can be obtained ad

follows

—%zmﬂ'—cu 7

The interesting thing found here by comparing
equation (5) and (7) is that the negative differentiate of
energy function E(v) is ratio to the velocity of input u.

And capacitance ¢ is the constant of ratio as follows

Also, if the weight matrix 2 is symmetric and
o(z) is continuously increasing function, then  this
energy function E(v) is a Liapunov function. This is

clear from the following[5]:

dE _dE dv __ ~du dv
dt dv dt dt dt )

=A% () < 0

Ill. Stability Analysis of Input space

Our objective in this section is to analyze how the
input conductance gi affects the stability of the neuron
input. The input conductance gi has been known
partially to define time constant and also to contribute
to the system stability. However, it has not been known
how to effect on time constant and stability, Here, we
discuss the influence of the input conductances on

stability of input space.

Proposition: In the continuous Hopfield neural
networks, the following statements about the stability of
input space are true:

(1) If the total conductance G, is great than zero,

then the input space is exponentially stble.

(194 )

(2) If the total conductance G; is equal to zero,
then the input space is linearly unstable.
(3) If the total conductance G; is less than zero,

then the input space is exponentially unstable.

Proof (1):
Denoting the total current as [, where
Iizii+ glw,;vj (10)

As seen Fig. 2, Eq. (4) can be simplified to the

form of a single state equation as

i

C‘ % G
;‘211 Wiy “

Fig.2.The Equivalent circuit seen from input node i.

du;
idt

As seen in previous section, the output of system

=—Gu;+1I; (1

becomes asymptotically stabilized in time decreasing the

energy function. Therefore, after some time in which the

output is stabilized, the current ﬁl wyv; can be
=

regarded as a constant. This means that afier the output

is stabilized, the total current JI; also can be treated as

a constant because the bias current §; is also constant.

By using the matrix notation defined in the previous
section, the final equation in matrix form can be

expressed as

du

C?—_—‘Gu-f—[ (12)

The solution of this equationf10] can be obtained
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by taking the Laplace transform

U =[s1+L17 () + [+ S 171 L

-1
s+Q 0 0
<
Gy
- 0 s+ < 0
:G,,
0 0 s+ c,
u(0) I
CIS
uy(0) I, ‘
+ Czs (13)
I,
u.(0) .S

where u(0) is input voltage at the time when the
output space is regarded being stabilized.

Here, we consider the stability of input space after
the output space is stabilized.

Eq. (13) can be rearranged as

Uk = (@~ —L—+-2 1 g

The inverse Laplace transform of Eq. (14) gives

G
I; I;
u(H= (u;(O)—?)e +? (15)

If the total conductance G, is greater than zero,
the first term of Eq. (15) is disappearing exponentially
and finally #,(#) becomes as

lim u ) = - e
o0 G;

Therefore, If the total conductance G; is great than
zero, then the input space is exponentially stable.

Case Study

The 2-bit A/D converter[2] is selected for a case
study. The connecting weights and the bias currents for
2bit A/D converter are as follow, where x is analog

input.

1
w= 0 —2, iz{x—z a7

-2 0 202
The state equation of inputs for 2-bit A/D converter

for x=1.6, cl=c2=1u is as below[9], because vl and v2
are established near to 0 and 1 respectively after output

space is stabilized.

FARGE EEEA BEE
duz 10 0 2—- g9 Uy 12
dt

(18)

where, [=i+wv=[ ] [_2 0 [ ;]

The transient simulations are performed for
cl=c2=1u, x=1.6, a=2 and different valuses of input
conductances. Microsim's Pspice version 8.0 is used to
simulate transient analysis. Fig. 3 shows the schematic

diagram for cl=c2=lu, x=1.6, a=2 and gl=p2=2.5.

() De=1.1 l”

R1

A
R2 205
—«N\,—-—J
-0.5
R4 R3

"\
04 04
c2 Cc1
i —{
tu ) 1u i)

HO eI V(%INGY | V8t ZVI%IND

v Lw |

Fig. 3. Pspice schematic diagram for 2bit A/D
converter in case x=1.6, gl=g2=2.5, cl=c2=1u and

a=2.

As shown in Fig. 4b, outputs vl and v2 converge
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nearly to 0.029 and 0989 respectively as the time
elapses. So, using Eq.(16), the inputs for this case are

obtained as below

T S5
R L] | gy 9.0 | L 22
0.5
(19

And we can realize that this analytic result is

same as the simulation result shown in Fig. 4a

L T T P P T
I =
7
/
ey - . ..
!
‘
R S ui ¢
N )
T e R ETT LT P pumwmmomen 4
as 5us 18us 15us 26us 25us asus
{B1U(BBMI10:IM) :JIU(ABHI18ZIN)
ine
(a)

M 15.988u,  29.415m
A2 = 15.930u, 989.390n
dif= 58.140n, -959.976n

[ B e it S LRI R 4
8s Sus 18us 15us Zﬂus 2sus $8us
{3 U{ABH116:00T) {31U(ABH110:00T)

Tine
®

Fig. 4. Transient simulation for 2bit A/D converter in
case x=1.6, gl=g2=2.5, cl=c2=1u anda=2: (a) input, (b)

output.

Proof (2):
If G;=0, Eq. (13) can be rearranged as

Journal of IEEE Korea Council Vol. 4, No. 2

UCs) =Ts0 ™ a(0) + [0 'L

I
s 0 L0 fm( | P
- 0 s 0 u2:(0) +| 2
0 0 .. s u,(0) I
CyS
(20)
Eq. (20) can be rearranged as
I;
Uls)= u(O)——+ Ll @n
The inverse Laplace transform of Eq. (21) gives
wlB=u, O+ ¢ @2)

Same as before, by regarding I; as a constant after

the output space being stabilized, the second term in
Eq. (22) changes linearly in time, so the input space is

linearly unstable.

Case Study

The 2-bit A/D converter[2] is also selected for this
case study.

Fig. 5 shows the transient simulations of input and
— wy;, thus,
%,

G;=0) and other conditions are same as before. As

output spaces for gl=g2= 2 (g; =

the output can be
the of 6us.
Therefore, after the time of 6us, Eq. (22) for this case

seen in output space simulation,

regarded being stabilized after time

can be expressed as

—0. 9><10 (t—6us)
1.2x10%(¢— 6us)

(23)

[ i8]

@, = Bus

u1(6us)] _,_[

ug(Gu.s)

As seen in Fig. 3,

—0.9%x10°%¢,
This fact is agreed with Eq. (23).

the slope of ul(t), u2(t) are

1.2%x10% respectively after the Gus.
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Fig. 5.Transient simulation for 2bit A/D converter in
case x=1.6,21=g2=2 cl=c2=1u and a=2:(a)input,(b)

output.

Proof (3):

As seen in Eq. (15), the total conductance G; is
less than zero, the first term of Eq. (15) is changing
exponentially. Therefore, If the total conductance G, is

less than zero, then the input space is exponentially

unstable.

Case Study

The 2-bit A/D converter is selected for this case
study also.

Fig. 6 shows the transient simulations for gl=g2=

(197)
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TEY d"ge A

i)

H 25

05 (g; < — 21 wy;, thus, (G,<0) and other conditions
=

are same as before. As seen in output output space
simulation, the output can be regarded being stabilized
after the time of 2.5us. Therefore, After the time of

2.5us, Eq. (15) for this case is as

[ itz 9.3

.5

o b

w(2.5u9) — -2 0
0 uz(z.sus)+%%

el.sxlos(t~2.5us)
[ e 1.5><10“(t—2.5us)]

9, t 2= 2.5us 24

As seen in Fig. 6, inputs changes to diverge

exponentially even after outputs are asymptotically

stabilized.

os 8.5u5 1. 0us 1.5us
5 UCABMITAI0UT) < UCABMII0:0UTY
Tame

b
Fig. 6 Transient simulation for 2bit A/D converter in
case x=1.6, gl=g2=0.5, cl=c2=1u anda=2: (a) input,
(b) output.
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The last two simulations have shown that the input

conductances, the values of which are not bigger than
- 21 w;, make system inputs unstable. There is one
7=

thing kept in mind that input space is unstable under
the certain circumstance such as in the last two cases,
however output space always converges asymptotically to

a stable point in any cases.

IV. Relation Between the third term Energy and
the Input Conductance

The first two terms in Eq. (6) are only used for
mapping to the objective function which is to be
minimized. The third term exists in the continsous type
Hopfield networks satisfying energy function as a
Lyapunov function. Therefore, it is recommendable to
reduce this term as small as possible for forcing this
energy function matched to the objective function. The

common method for ignoring the third term is to use

high sigmoid gain. However, as a sigmoid gain ¢ goes

infinite, the output of neuron becomes discrete rather

than continuous.

In this section, we discuss new method for ignoring
the third term of energy function with a finite sigmoid
gain. With this new method, the system can keep the
continuous output of neuron as well as ignore the third
term of energy function.

Using the inverse function f !(z), the third term

in Eq. (6) can be expressed as

_1 " z
E=1 lﬁ;:lc,f% n(725)de 25)

The integral is zero for wv=1/2 and positive
otherwise, getting large as v; approaches 0 or 1 because

of slowness with which A ¢) approaches its asymptotes

(Fig. 7a). As mentioned early in this section, it can be

known from Eq. (25) that the common method for

neglecting the third term of energy function Ej is to

select the sigmoid gain a very high.

L

Fn
-2
-a
-EO 0.2 0.4 K] o8 1
(@
ju:f“(z)dz.
e o g
()
Fig. 7. (8) The output-input transfer characteristic,
-1
u=f"(V).

(b) The contribution of f~! to the third term
of energy function.

Consider now new method of ignoring the third
term of energy function with the finite sigmoid gain.
As known in Eq. (25), E; is a function of v;, the
sigmoid gain a, and the total conductances ;. Here,
we introduce a new method to eliminate this term by
adjusting the total conductances (; To eliminate the
third term energy, the total conductances &; can be

adjusted to zero.
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Gi=gi+ ]le,-,:o i=1,2,...,n. (26)
Thus, the Input conduces g; can be adjusted as

follows

gi=— glw,, i=1,2,...,m. @7)

This choice of g; in the system would ensure
convergence exactly to the objective function. However,
it has been shown in the previous section that in case
of the total conductances G; equal to zero, the input
space is unstable as it changes linearly in time.
Therefore, the total conductances G; should be selected

as small as possible to neglect the third term energy,

but greater than zero to make the input space stable.

Case Study

The 2-bit A/D converter is also selected for a case
study. The energy function for 2-bit A/D converter
including weights and bias currents can be expressed as

follows [3], where x is analog input.

E:
—1py v][ 0 _2] Uil —[v; 1] x_%
2 1 2 _2 0 [7}2] 1 2 2x_2
G o z
| s (TE e 28)
Gy (™ 2
a fo.sln( 1~z)dz

Fig. 8 shows the energy map and transient result in
case of x=1.6, a=2, and g;= g, =2.8. We can see
that the system converges near to the answer (the digital
outputs should be v=0 and v;=1 for analog input
x=1.6). However the system would converge farther to
the correct answer as the total conductances G; grows,
because this minima moves toward the center of the
energy map as the third term energy grows. Fig. 9
shows the energy map and transient result in case of

x=1.6, a=2, and g, =gy,=2.1. To neglect the third

term energy, g;=g,=2.]1 are selected. As seen in

(

1o
rl
iv)
my)
)
it
i)
>

27

Fig. 9, the minima is located more closely at the
correct answer compared as in Fig. 8, and so converges

the system in transient simulation.

(@)
B = mm e
| y2
-/
s |
/ = 254650, 144.130n
v A = 25.4650, 966.841n [NENNNNNE
”'5U§ A 1.000, -762.702n :
AN :
\\\ :
1 Ay H
BN 1
N :
k‘\\, Vi '
]
i ¥
t ]
!
o+ ; et promem poseameena e {
s S5 s 15us 20us 2508 J8us
o U(ABKH:0UT) {2 U(RBNT10:0UT)
Tine
(b)

Fig. 8. 2bit A/D converter in case x=1.6, gl=g2=2.8,
and a=2:
(a) The energy map, (b) Transient simulation

of output.
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1.8
/ V2

. . = 23.77%u, 146.894n
= 23.779u, 1.6040
\ 6.009, -1.8090

2] T T T T T
S Sus 18us 15us 20us 25u8 30us
{GU(ABHI16:0UT) {51 U(ABH10:00T)
Tine
(b)

Fig. 9. 2bit A/D converter in case x=1.6, gl=g2=2.1,
anda=2: (a) The energy map (b) Transient simulation of

output.

V. Conclusion

The conductance and capacitance at a neuron's input
leading to ground have been known partially to define
the system's time constant and to effect the system's

stability. However, not much things about these

components have been published, therefore choosing the
adequate value of these components would be one of
the problems occurred during implementing hardwares or
simulating circuit level systems.

In this paper, the input conductance connected
parallel with capacitance has been analyzed for the
effects on stability of systems. The input conductance
has been proved to be able to effect much on stability
in input space and, on improving the performance of the

system. That is, in case of the total conductance G;

>0, the input of system converges to a stable point
decreasing exponentially. However, in this case, the
output converges to other point rather than the minima

of objective function, because the third term of energy

function becomes large as the total conductance G, gets

grow. In case of (G0, the third term of energy
function is eliminated, but the .input of system is
analyzed unstable, because the input changes linearly in
time. In case of G;<0, the input of system changes
exponentially in time, and results in unstable.

Therefore, the input conduces g; have to be adjusted
greater than zero for proving the stability and but near

to zero for improving the performance of the system.
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