MLE 공정을 이용한 고농도 $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 함유 침출수의 생물학적 질산화/탈질

원종철 - 남궁완* - 배영신 - 이경신 - 박기혁 • 송수성 • 윤조희**
환경관리궁단 수도권사업본부
*건국대학교 환경공학과
**경남대학교 정밀화학공학부

(1999년 11월 19일 점수. 2000 년 3월 17 일 채택)

Biological Nitrification and Denitrification for Landfill Leachate Containing High Concentration of Ammonium-Nitrogen by using MLE Process

Jong-Choul Won • Wan Namkoong* • Young-Shin Bae • Kyung-Shin Lee Ki-Hyuk Park • Su-Sung Song • Cho-Hee Yoon**

The Metropolitan Area Landfill Department. Environmental Management Co.
*Department of Environmental Engineering. Kunkuk University
** Division of Fine Chemistry and Chemical Engineering. Kyungnam University

Abstract

This study was carried out to investigate the treatability of landfill leachate having high concentration of ammonium nitrogen with/without the circulation of media in pilot-scale ($48 \mathrm{~m}^{3}$ basis) process. Total nitrogen removal efficiency was relatively increased in the media added process(influent : $1.230 \sim 2.000 \mathrm{mg} \cdot \mathrm{l}^{-1}$, effluent : 120 $-250 \mathrm{mg} \cdot \mathrm{l}^{-1}$) compared with the control process. The difference of nitrogen removal efficiency between these processes may be due to that stable growth of nitrifiers attached to the media could be achieved 99.3% of ammonium-nitrogen removal efficiency (without : 98.2%) and 88.5% of total nitrogen removal efficiency(without : 85.8%) were shown in media added process, respectively. Also, optimum BOD/ $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ ratio was relatively decreased in the media process compared with the control process. Sludge settleability, on the other hand, was shown better in media added process than in control process. This outstanding sludge settleability in the media added process indicates the compatibility of media(zeolite) to the microorganism and the possibility of using media of biofilm process.

Key Words : Landfill Leachate, Biological Nitrification/Denitrification, BOD/ $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ Ratio. Media. External Carbon Source

요 약 문

본 연구에서는 생활폐기물 매립지에서 발생되는 침출수에 함유된 고농도 $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 및 $\mathrm{T}-\mathrm{N}$ 의 적정처리률 위하여 pilot 규모의 MLE 공정올 이용하여 생물학적 질산화/탈질올 실시한 결과 $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 은 99% 이상, T- N 은 88% 정도의 처리효율을 얻올 수 있었으며, $\mathrm{BOD} / \mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 비률 약 3.5 로 유지할 경우 $\mathrm{T}-\mathrm{N}$ 은 $0.09 \mathrm{kgN} \cdot \mathrm{m}^{-3} \cdot \mathrm{day}^{-1}$ 정도 제거되는 것으로 나타넜다. 또한, 질 산화/탈질과정에서 $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 산화량에 따른 알카리도 소비량은 평균 $3.4 \sim 3.5 \mathrm{kgAlk}$ -$\mathrm{kgNH}_{4}^{+}-\mathrm{N}^{-1}$ 정도로 나타낫으며, 외부탄소원으로 투입된 메탄을에 대한 탈질균의 적응 기간은 약 20 일 정도가 필요한 것으로 나타낪다. 또한, 질산화조에 유동상 메디아률 투입한 졀과 투입 하지 않았을 때에 비하여 SV_{30} 가 2 배 정도 양호하게 나타났다.

주제어 : 침출수, 생물학적 질산화/탈질, $\mathrm{BOD} / \mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 비, 담체, 외부탄소원

1. 서 론

생활폐기물 매립지에서 발생되는 침출수는 매립 되는 쓰레기의 종류, 매립량, 매립년한, 매립방법, 강우량, 기후조건, 쓰레기 다짐정도 등 많은 환경변 수에 따라 수질과 발생량이 다르게 나타나며, 더욱 이 최근에는 생활과 산업기술의 발달로 새로운 합성 물질이 함유된 생활폐기물의 매립으로 인해 침출수 의 질온 더욱 다양하고 복잡해지는 경향이 있다. ${ }^{1.2)}$ 매립된 쓰레기는 쓰레기충과 토양충내 존재하는 미 생물에 의해 분해되는 생물학적 분해와 가수분해, 용해, 침전, 흡착 둥의 물리, 화학적 작용 둥 복합된 분해 과정올 통하여 매립초기에는 고농도의 유기물 질올 함유한 침출수가 배출되며, 매립시간이 경과됨 에 따라 유기물질온 감소하고 질소성분이 점차 증가 하는 경향올 나타내는데, ${ }^{3-5)}$ 수도권 매립지도 유사 한 경향올 나타내어 침출수에 함유된 충질소 ($\mathrm{T}-\mathrm{N}$) 는 매립 1년차인 92 년에는 약 $300 \sim 500 \mathrm{mg} \cdot 1^{-1}$ 정도이었으나 매립년한이 경과합에 따라 점차 중가 하여 매립 $5 \sim 6$ 년차에는 $1.500 \sim 2.200 \mathrm{mg} \cdot \mathrm{l}^{-1}$ 까지 상숭되어 매립 6년차에 매립 1년차에 비하여 약 4~5배 가량 중가되는 것으로 나타나고 있다. ${ }^{6)}$
그동안에는 매립지 침출수에 질소규제가 실시되 지 않았으나. 침출수에 함유된 고놓도의 질소로 인 한 수계오염도를 저감하기 위하여 '99.7.1일부터 생활폐기물 매립지 침출수의 방류수중 암모니아성 질소률 $100 \mathrm{mg} \cdot \mathrm{l}^{-1}$ 이하로 규제하였으며, 2001.
7. 1 일부터 충질소률 $300 \mathrm{mg} \cdot 1^{-1}$ 이하로 규제할 계획으로 있다. ${ }^{7}$ 그러나. 기존의 생할몌기믈 매립지 침출수처리장이 대부분 활성슬러지법올 이용하여 주로 유기물질(BOD, COD 등)만올 처리하였기 때 문에 규제기준 이하의 질소농도를 만족하기 위한 처 리방법올 추가로 설치하거나 기존 처리공정의 보완 이 필요하다. ${ }^{8)}$

침출수에 함유된 고농도(약 $2,000 \mathrm{mg} \cdot \mathrm{l}^{-1}$ 이상) 의 암모니아성질소롤 처리하기 위한 방법으로 ammonia stripping 둥과 같은 물리화학적인 처리 방법과 생물학적 질산화/탈질 처리방법이 있으나. 물리화학적인 처리방법은 처리공정이 복잡하고 생 물학적 처리방법에 비하여 유지관리비용이 과다하 게 소요되므로 생물학적 처리방법이 효과적이라 할 수 있다. ${ }^{9.10)}$ 그러나. 침출수의 생물학적 질산화/탈 질시 고농도 암모니아성질소에서 유발되는 유리암 모니아(free-ammonia)에 의한 독성으로 질산화조 에 아질산성질소 $\left(\mathrm{NO}_{2}^{-}-\mathrm{N}\right)$ 가 축적되는 불완전 질산 화가 발생되기도 하며, 유기물 부족으로 인한 탈질 율저하. 슬러지 침강성 저하로 인한 반웅조의 적정 미생물농도 유지의 어려움, 처리수의 부유물질 증가 등 적정처리에 많은 문제점이 나타나고 있다. ${ }^{11.12)}$
따라서, 본 연구는 생할폐기물 매립장에서 발생되 는 고농도 암모니아성질소 $\left(1,500 \mathrm{mg} \cdot \mathrm{l}^{-1}\right.$ 이상)를 함유한 침출수의 생물학적 질산화/탈질 처리 가능성 올 조사 검토하고, 기존 침출수처리장에 설치된 활 성슬러지 시설을 최대한 활용이 가능하며. 질산화

처리수의 반송(내부 및 외부)올 이용하여 생물학적 탈질울 실시할 수 있는 MLE(Modified LudzackEttinger)공정의 침출수에 대한 적용가능성과 MLE 공정 운전시에 필요한 운전인자를 도출하고자 하였 으며, 유동상담체의 투입 및 외부탄소원 첨가 등이 질산화/탈질에 미치는 영향올 검토하고자 하였다.

2. 실험방법 및 내용

2.1. 실험장치

실험장치는 MLE공정으로 탈질조와 질산화조 및 침전조로 구성되어 있으며 반송온 내부와 외부 나누 어 실시할 수 있도록 하였고 Fig. 1과 같이 2계열로 설치하여 실헙하였다.

2.2. 실험방법

2.2.1. 운전조건

Pilot규모 시설의 운전은 유동상담체를 투입하지 않은 경우(A계열)와 투입한 경우(B계열)로 구분하 여 실험올 실시하였으며, 운전조건올 Table 1 에 요 약하여 나타냈다.

Fig. 1. Schematic diagram of pilot-scale MLE process.

2.2.2. 담 체

유동상담체는 국내산 천연제율라이트를 이용하였 으며, Table 2 에 믈리적 톡성울 나타냈다.

2.2.3. 대상 침출수

Table 3에 실험기간중에 침출수의 평균 유입수질 올 나타냈다.

2.2.4. 분석방법

유입수, 탈질조 유출수, 질산화조 유출수률 채수 하여 주 2 희 이상 분석하였으며. CODcr, Alkalinity는 Standard methods ${ }^{13)}$, BOD, COD ${ }_{M n}$, SS, $\mathrm{T}-\mathrm{N}, \mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 는 환경오염공정 시헙법 ${ }^{14)}$ 에 준하여 분석하였다. TOC는 TOC-analyzer(DC-180) 률 이 용하여 분석하였고 $\mathrm{NO}_{2}^{-}-\mathrm{N}, \mathrm{NO}_{3}^{-}-\mathrm{N}$ 은 IC (Dionex,

Table 1. Operating conditions in this study

conditions		without media	with media
flow rate		$3 \mathrm{~m}^{3} \cdot$ day $^{-1}$	
DO	anoxic	$0.05 \sim 0.2 \mathrm{mg} \cdot \mathrm{l}^{-1}$	$0.1-0.2 \mathrm{mg} \cdot \mathrm{l}^{-1}$
	aerobic	$2.8 \sim 3.6 \mathrm{mg} \cdot \mathrm{l}^{-1}$	$3.0 \sim 3.9 \mathrm{mg} \cdot \mathrm{l}^{-1}$
pH	anoxic	$7.7 \sim 8.4$	$7.9 \sim 8.4$
	aerobic	$7.5 \sim 8.0$	$7.4 \sim 7.9$
MLSS	anoxic	$7.000 \sim 12.000 \mathrm{mg} \cdot \mathrm{l}^{-1}$	$8,000 \sim 14,000 \mathrm{mg} \cdot \mathrm{l}^{-1}$
	aerobic	$8,000 \sim 13,000 \mathrm{mg} \cdot \mathrm{l}^{-1}$	$10,000 \sim 15,000 \mathrm{mg} \cdot \mathrm{l}^{-1}$
HRT	anoxic	4.0 days	
	aerobic	9.7 days	
zeolite media		-	330 kg
methyl alcohol		$15 \mathrm{~L} \cdot$ day $^{-1}\left(\mathrm{BOD}_{5} / \mathrm{NH}_{4}{ }^{+}-\mathrm{N}=2.5 \sim 3.8\right)$	
return ratio		4(internal : 3. external : 1)	

Table 2. Properties of the domestic powdered zeolite

properties	specification
particle size	less than 0.2 mm
apparent density	$0.954 \mathrm{~g} \cdot \mathrm{~mL}^{-1}$
true density	$1.7258 \mathrm{~g} \cdot \mathrm{~mL}^{-1}$
specific surface area	$31.36 \mathrm{~m}^{2} \cdot \mathrm{~g}^{-1}$ (average pore size $\left.=75.99 \mu \mathrm{~m}\right)$
porosity	31.2%

Table 3. Characteristics of raw leachate

component	conc. [mg $\cdot 1^{-1}$]	component	average ratio [-
BOD	1.869~4,140(2,841)*	BOD/COD ${ }_{\text {cr }}$	0.6
$\mathrm{COD}_{\mathrm{cr}}$	3,150~6.650(4,769)	$\mathrm{COD}_{\mathrm{Mr} 2} / \mathrm{CODC}_{\mathrm{r}}$	0.24
T-N	1.230~1,9103(1.633)	TOC/BOD	0.5
$\mathrm{NH}_{4}^{+}-\mathrm{N}$	$1.220 \sim 1,820(1,512)$	CODc ${ }_{\text {r }} / \mathrm{T}-\mathrm{N}$	2.92
Alkalinity	$5.510 \sim 9.160(6,936)$	BOD/ $/ \mathrm{H}_{4}{ }^{+}-\mathrm{N}$	1.88
TSS	110-280(184)	$\mathrm{NH}_{4}{ }^{+}-\mathrm{N} / \mathrm{T}-\mathrm{N}$	0.93
pH	7.6-7.8(7.7)		

- Numbers in parentheses indicate average values
$\mathrm{DX}-300$)률 이용하였으며, pH 는 pH meter(Orion720A). DO는 DO meter(YSI-58)률 이용하여 분 석하였다.

3. 결과 및 고찰

3.1. 순응기간

침출수중에 함유된 $\mathrm{T}-\mathrm{N}$ 중에 약 90% 가 $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 로 구성되어 있어 free-ammonia에 의한 질산화균 의 저해영향으로 정상적인 질산화의 유도가 곤란하 다. ${ }^{9-12)}$ 따라서 침출수에 대한 질산화균의 적응올 위하여 A, B 계열 탈질조와 질산화조에 각각 현장 포기식라군조 반송수(MLSS $13,000 \mathrm{mg} \cdot 1^{-1}$)를 각 계열의 질산화/탈질조에 조용량 $\left(48 \mathrm{~m}^{3}\right)$ 대비 50% 정도 채우고 하천수를 약 50% 보충하여 $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 농도률 초기농도의 약 $1 / 2$ 인 $750 \mathrm{mg} \cdot \mathrm{l}^{-1}$ 정도로 희석한 후 포기률 실시하였다. 이때, 탈질조 및 질산 화조의 운전상태는 수온 약 $15 \sim 20^{\circ} \mathrm{C}, \mathrm{pH}$ 가 8.0 ~ 8.4. MLSS 농도는 A. B계열 모두 6.500~7.500 $\mathrm{mg} \cdot \mathrm{I}^{-1}$. 질산화조의 DO 는 $3 \sim 4 \mathrm{mg} \cdot \mathrm{l}^{-1}$ 정도률 유

지하였다. 질산화조내 $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 산화는 포기후 약 5 일정도부터 시작되어 약 20 일 정도 경과되었을 때 A, B 계열 모두 99% 정도의 질산화율울 나타냈으 며, 이매 질산화조의 pH 는 7.5~7.7 정도였다. 원 수투입은 $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 이 90% 이상 산화되기 시작한 약 15 일 정도의 포기기간 이후부터 투입하였으며. 원 수투입과 동시에 완전탈질올 위한 C / N 비률 고려하 여 A, B 계열 모두 $\mathrm{BOD} / \mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 비가 2.5~3.8 범 위로 유지될 수 있도록 메탄을을 투입하였고 ${ }^{15)} \mathrm{B}$ 계 열에는 유동상담체(zeolite)를 투입하였다.

3.2. $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 및 $\mathrm{T}-\mathrm{N}$ 처리효율

Fig. 2(a), (b)에 각각 $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 의 유입 및 유출 수의 농도와 처리효율을 나타내었다. 유입수의 $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 농도는 $1.200 \sim 1.650 \mathrm{mg} \cdot \mathrm{l}^{-1}$ 이었다. 침 출수를 유입하여 질산화/탈질처리를 시작한 초기에 는 처리수중의 $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 농도가 A, B 계열이 각가 $178,40 \mathrm{mg} \cdot 1^{-1}$ 까지 상숭하였으나, 약 20 일 이후 에는 두 계열 모두 $11 \sim 27 \mathrm{mg} \cdot \mathrm{l}^{-1}$ 범위의 매우 낮 은 처리수질올 나타냈다. 그러나. A계열의 경우 45 일후 일시적인 $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 중가현상을 보였는데 그 이 유는 침출원수 분배 투입시 A 계열로 계획처리량(3

Fig. 2. Variation of $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ concentration and removal efficiency, (a) $\mathrm{NH}_{4}^{+}-\mathrm{N}$ concentration, (b) $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ removal efficiency.
$\left.\mathrm{m}^{3} \cdot \mathrm{day}^{-1}\right)$ 에 비하여 다소 증가된 침출수가 유입되 었기 때문인 것으로 사료된다.
운전초기 $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 처리효율온 A 계열 (control 실 험)이 $88 \sim 99 \%$ 로 변동목이 약 11% 까지 나타났으 4. 유동상담체률 투입한 B계열의 처리효율은 98~ 99% 로 A계열에 비하여 초기부터 안정적인 처리효 율 범위를 나타냈다. B 계열과 달리 A 계열의 $\mathrm{NH}_{4}{ }^{+}-$ N 처리효율이 운전초기에 변동이 심하게 나타나는 것온 외부탄소원으로 탈질조에 투입된 메탄올에 대 한 탈질균의 적응기간 부족으로 탈질과정에서 소비 되지 않은 메탄올이 질산화조로 유입되게 되고 질산 화조내에서 종속영양세균(heterotrophs)의 성장으 로 인한 질산화균의 활성이 저하되기 때문인 것으로 판단되었다. 그러나. 유동상담체가 투입된 B 계열의 경우는 담체에 의한 $\mathrm{NH}_{4}^{+}-\mathrm{N}$ 의 이온교환과 합께 미 생물의 부착 둥으로 인하여 질산화/탈질조내 미생물 농도가 A계열에 비하여 약 $2,000 \mathrm{mg} \cdot 1^{-1}$ 정도 높 게 유지되므로서 운전초기부터 안정적인 질산화울 을 나타내는 것으로 판단되었다. 한편, 메탄올에 대 한 충분한 적응기간이라고 판단되는 약 20 일이 경 과된 이후에는 A, B 계열 모두 거의 유사한 약

Fig. 3. Variation of $\mathrm{T}-\mathrm{N}$ concentration and removal efficiency, (a) T-N concentration. (b) $\mathrm{T}-\mathrm{N}$ removal efficiency.

Fig. 4. Variation of $\mathrm{NO}_{2}^{-}-\mathrm{N}$ and $\mathrm{NO}_{3}^{-}-\mathrm{N}$ concentrations.
99% 의 $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 산화율을 나타냈다.
처리수의 T-N농도는 Fig. 3(a), (b)에 나타낸 바 와 같이 A 계열은 $170 \sim 350 \mathrm{mg} \cdot 1^{-1}$ (평균; 232 $\mathrm{mg} \cdot \mathrm{l}^{-1}$)인 반면. B 계열은 $120 \sim 250 \mathrm{mg} \cdot \mathrm{l}^{-1}$ (평 균: $188 \mathrm{mg} \cdot{ }^{-1}$)로 B 계열이 A 계열보다 평균 약 $44 \mathrm{mg} \cdot \mathrm{I}^{-1}$ 정도 낮게 나타났으며, 처리효율도 A 계 열이 평균 85.8%, B 계열이 평균 88.5% 로 A 계열에 비해 2.7% 정도 높게 나타났다. 또한, 질산화/탈질 처리수에 잔류되어 있는 질소형태는 Fig. 4에 나타 낸 바와 같이, A 와 B 계열 모두 대부분이 $\mathrm{NO}_{3}^{-}-\mathrm{N}$ 으 로 나타넜으며. 질산화과정에서 free-ammonia에

Fig. 5. Relationship between volumetric nitrogen loading rate and removal rate,
(a) $\mathrm{NH}_{4}^{+}-\mathrm{N}$,
(b) $\mathrm{T}-\mathrm{N}$.

의한 질산화균의 저해영향으로 인한 $\mathrm{NO}_{2}^{-}-\mathrm{N}$ 축적 현상은 나타나지 않았다.
$\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 및 $\mathrm{T}-\mathrm{N}$ 유입 용적부하에 대한 제거랑비 는 Fig. 5(a), (b)에 나타낸 바와 같이 본 실험 범위 하에서는 직선적인 비례관계를 나타내었다. 담체률 투입한 B 계열이 A 계열에 비하여 $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 은 $1.0 \times$ $10^{-3} \mathrm{kgN} \cdot \mathrm{m}^{-3} \cdot$ day $^{-1}$, T-N은 약 $3.0 \times 10^{-3} \mathrm{~kg}$ $\mathrm{N} \cdot \mathrm{m}^{-3} \cdot \mathrm{day}^{-1}$ 정도 높게 나타났다.
한편, $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 및 $\mathrm{T}-\mathrm{N}$ 미생물부하에 대한 제거랑 비도 Fig. 6(a). (b)에 나타낸 바와 같이 용적부하 의 중가에 대하여 직선적인 비례관계를 나타내었으 며, 담체률 투입한 B 계열이 $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 은 0.99, $\mathrm{T}-\mathrm{N}$ 온 0.88 로 A 계열에 비하여 $\mathrm{NH}_{4}{ }^{+}-\mathrm{N} . \mathrm{T}-\mathrm{N}$ 모두 약 0.03 정도 크게 나타났는데, 이는 유동상담체 투입 으로 조내 미생물농도가 높게(약 $2,000 \mathrm{mg} \cdot \mathrm{l}^{-1}$) 유지되므로서 단위 미생물당 제거되는 질소량이 증 가하기 때문인 것으로 판단된다.

3.3. 유기물질 처리효율

매립경과기간이 약 5년 이상된 생활폐기물매립지

Fig. 6. Relationship between nitrogen loading rate and removal rate, (a) $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$, (b) $\mathrm{T}-\mathrm{N}$.

에서 발생되는 침출수에 함유된 $\mathrm{COD}_{\mathrm{Cr}}$ 의 약 40% 이상이 난분해성 유기물로 되어 있어 생물학적 처 리 이후에도 고농도의 $\mathrm{COD}_{\mathrm{Cr}}$ 이 잔류되게 된다. ${ }^{1-3)}$ 수도권매립지 침출수 처리시설의 경우에도 $\mathrm{COD}_{\mathrm{Cr}}$ 의 처리효율은 약 68% 로 생물학적 처리수의 평균 $\mathrm{COD}_{\mathrm{Cr}}$ 농도가 약 $1,670 \mathrm{mg} \cdot \mathrm{I}^{-1}$ 올 나타냈다. ${ }^{6)}$ 그러 나. 본 생물학적 질산화/탈질공정올 이용하여 침출 수를 처리한 결과. Fig. 7(a), (b)에 나타낸 바와 같 이 유출수 CODC_{r} 평균농도는 A, B 계열에서 각각 $731 \mathrm{mg} \cdot \mathrm{l}^{-1}, 695 \mathrm{mg} \cdot \mathrm{l}^{-1}$ 로 평균 처리효율이 각각 84.7% 와 85.4% 이었으며, 이는 기존의 표면포기방 법인 생물공정보다는 약 17% 정도 처리효율이 상숭 된 값이다. ${ }^{6)}$ 또한, B 계열이 A 계열에 비하여 처리효 율이 약 0.7% 정도 높아 $36 \mathrm{mg} \cdot \mathrm{l}^{-1}$ 정도 더 제거 되었고, 제거된 $\mathrm{COD}_{\mathrm{Cr}}$ 의 약 89% 는 무산소 탈질공 정에서 제거되는 것으로 나타났다.
BOD 의 경우는 질산화/탈질 처리수의 폄균농도가 A 계열은 $19 \mathrm{mg} \cdot \mathrm{l}^{-1}, \mathrm{~B}$ 계열은 $14 \mathrm{mg} \cdot \mathrm{l}^{-1}$ 로 두 계 열 모두에서 대부분 제거되었다. 또한, $\mathrm{CODc}_{\mathrm{r}}$. BOD 모두 약 20 일 정도 가동시간이 경과된 이후부 터 안정적인 처리수질올 나타내는 것으로 보아 메탄

Fig. 7. Variation of influent and effluent concentrations, (a) $\mathrm{COD}_{\mathrm{cr}}$ concentration, (b) BOD concentration.

을에 대한 탈질균의 적웅기간이 약 20 일 정도 필요 한 것으로 판단되었다.
생물학적 질산화/탈질 처리수의 $\mathrm{COD}_{\mathrm{Cr}}$ 농도가 현 재의 방류기준인 $800 \mathrm{mg} \cdot \mathrm{I}^{-1}$ 보다 낮은 수질올 나 타내지만 향후, 침출원수내 난분해성유기물 함유율 이 증가할 경우 질산화/탈질 처리수의 $\mathrm{COD}_{\mathrm{Cr}}$ 농도 가 방류기준을 초과할 가능성이 있으며. 또한, 색도 도 방류기준(300 unit, 2001.7.1일 시행)을 초과 하여 약 600~700 unit률 나타내므로 잔류 $\mathrm{COD}_{\mathrm{Cr}}$ 및 색도처리률 위한 물리화학적인 후처리가 필요하 다. ${ }^{2-4.16-18)}$

> 3. 4. $\mathrm{BOD} / \mathrm{NH}_{4}^{+}-\mathrm{N}$ 비 및 Alkalinity/ $\mathrm{NH}_{4}^{+}-\mathrm{N}$ 비

본 실험에 사용한 침출수의 $\mathrm{COD}_{\mathrm{Cr}} / \mathrm{T}-\mathrm{N}$ 비는 2.92 로 생물학적 탈질에 필요한 적정 $\mathrm{COD}_{\mathrm{cr}} /$ $\mathrm{NO}_{3}-\mathrm{N}$ 비로 제시된 2.86^{7} 보다 다소 높은 값올 나 타내지만, $\mathrm{BOD} / \mathrm{COD}_{\mathrm{C}_{r}}$ 의 비가 약 0.6 으로 넞기 때 문에 CODCr 중에 생물분해에 이용가능한 부분만 고 려할 경우 생물학적 탈질에 필요한 탄소원으로 CODc 을 적용하는 것보다는 BOD 를 탄소원으로 적

Fig. 8. Variation of $\mathrm{T}-\mathrm{N}$ removal efficiency to $\mathrm{BOD} / \mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ ratio, (a) $\mathrm{BOD} /$ $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ range : $2.5 \sim 3.8$, (b) $\mathrm{BOD} /$ $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ range : $1.2 \sim 3.8$.

용하는 것이 바람직할 것으로 판단되어 C / N 비의 탄 소원 기준을 BOD 로 하였다.
유입 침출원수의 $\mathrm{BOD} / \mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 비는 1.88 로 낮 아 실험기간중 A 계열과 B 계열 모두 외부탄소원으로 메탄올을 투입하여 $\mathrm{BOD} / \mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 를 2.5-3.8 정 도까지 상숭시켜 운전한 결과, $\mathrm{T}-\mathrm{N}$ 의 처리효울은 Fig. 8(a)에 나타낸 바와 같이 $\mathrm{BOD} / \mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 비 약 2.5 일 경우 A, B 계열 각각 약 82% 와 88% 롤 나타 내 B 계열이 A 계열에 비하여 약 6% 정도 높은 $\mathrm{T}-\mathrm{N}$ 처리효율올 나타냈으며. 이후 $\mathrm{BOD} / \mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 비률 약 3.5 이상으로 증가시켰을 때는 A, B계열의 T-N 처리효율이 거의 같은 약 88% 정도를 나타냈다.
또하. Fig. 8(b)에 나타낸 바와 같이 A계열 (control)의 운전초기에 외부탄소원 투입없이 침출 원수만 투입하여 $\mathrm{BOD} / \mathrm{NH}_{4}{ }^{+}$- N 비를 $1.2 \sim 1.9$ 정 도 유지하였을때 T-N 처리효율은 $55 \sim 65 \%$ 를 나타 냈으나. 외부탄소원올 투입하여 $\mathrm{BOD} / \mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 비률 3.3~3.8 정도까지 중가시켰을 때 T-N 처리효율은 $85 \sim 90 \%$ 로 메탄올 투입전에 비하여 $20 \sim 35 \%$ 정 도 상숭된 것으로 나타났다. 따라서, 침출수의 생물 학적 질산화/탈질울 위한 유입 침출수의 $\mathrm{BOD} /$ $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 비는 유동상담체룰 투입할 경우는 약 2.5 .

유동상담체의 투입이 없는 경우는 약 3.5 정도를 유 지하는 것이 적당한 것으로 판단된다.
$\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 산화량당 알카리도 소비량(\triangle Alkalinity $/ \Delta \mathrm{NH}_{4}{ }^{+}-\mathrm{N}$)의 비는 Fig. 9에 나타낸 바와 같 이 A, B 계열 평균 $3.4 \sim 3.5 \mathrm{kgAlk} \cdot \mathrm{kgNH}_{4}{ }^{+}-\mathrm{N}^{-1}$ 정도인 것으로 나타나 이론적인 소비량 3.57 kgAlk $\cdot \mathrm{kgNH}_{4}{ }^{+}-\mathrm{N}^{-1}$ 과 거의 일치하였다. ${ }^{9-12)}$

3.5. 슬러지 침강성

담체 투입여부에 따른 슬러지의 침강성을 조사한 결과를 Fig. 10 에 나타내었다. B계열의 MLSS 침 강성이 A 계열의 MLSS 침강성에 비하여 초기 8 분 동안 상당히 줗고 SV_{30} 도 약 2 배 정도 양호하게 나 타났는데, 이러한 이유는 약 0.2 mm 크기로 잘게 부순 zeolite를 질산화조에 투입하므로서 zeolite 자 체가 미생물이 부착성장할 수 있는 담체로 작용하여 단위용적당 미생물량의 중가로 인한 침강성의 향상 으로 판단된다.

한편. 침출수에 함유된 $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 가 zeolite에 흡착 가능한 쳐대량은 약 $5.6 \mathrm{mgNH}_{4}{ }^{+}-\mathrm{N} \cdot \mathrm{gZeolite}^{-1}$ 정도 ${ }^{19}$ 로 투입된 zeolite량 330 kg 에 의한 $\mathrm{NH}_{4}{ }^{+}$ N 최대흡착량은 약 1.85 kg 정도인데 반웅조로 일 일 유입되는 $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 량이 $4.54 \mathrm{~kg} \cdot \mathrm{day}^{-1}$ 으로 실 험기간 전체에 유입된 총 $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 량 약 277 kg 을 고려할 경우 zeolite 합착에 의한 암모니아 제거효 율은 약 0.7% 정도로 매우 미미하였다. 따라서, 담 체투입에 의한 처리공정 개선효과는 직접적인 $\mathrm{NH}_{4}{ }^{+}$ N 흡착제거보다는 담체역할로 미생물(MLSS)의 부 착으로 인한 질산화균의 고정상숭효과와 슬러지 침 강성의 개선으로 인한 전반적인 처리수질의 향상인 것으로 판단되었다.

4. 결 론

Pilot 규모의 MLE 공정올 이용하여 고농도 $\mathrm{NH}_{4}^{+}-\mathrm{N}$ 를 함유하고 있는 침출수의 적정 처리성 실 험을 실시한 바, 다옴과 같은 결론을 얻었다.

1) 침출원수에 함유된 고농도 $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}($ 약 1,200 $\sim 1,650 \mathrm{mg} \cdot \mathrm{l}^{-1}$)은 MLE 공법으로 약 99%

Fig. 9. Variation of Δ alkalinity $/ \Delta \mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ ratios.

Fig. 10. Comparison of sludge settleability in this study.

이상 처리되는 것으로 나타낪으며. 운전초기 부터 약 90% 이상까지 질산화가 진행되는 기 간은 약 20 일 정도 소요되는 것으로 나타났다. 또한, 유동상담체가 투입된 B 계열이 A 계열에 비하여 $16 \mathrm{mgNH}_{4}{ }^{+}-\mathrm{N} \cdot 1^{-1}$ 정도 낮은 안정적 인 처리수질을 나타냈다.
2) 처리수의 $\mathrm{T}-\mathrm{N}$ 농도는 B 계열이 평균 188 $\mathrm{mgT}-\mathrm{N} \cdot \mathrm{l}^{-1}$ 로 A 계열에 비하여 약 $44 \mathrm{mgT}-\mathrm{N}$ $\cdot 1^{-1}$ 정도 낮게 나타났다. 또한 T-N 유입 용 적부하에 대한 제거량은 B 계열이 약 0.09 $\mathrm{kgN} \cdot \mathrm{m}^{-3} \cdot \mathrm{day}^{-1}$ 로 A 계열에 비하여 약 $3.0 \times$ $10^{-3} \mathrm{kgN} \cdot \mathrm{m}^{-3} \cdot$ day $^{-}$정도 크게 나타난다.
3) 88% 정도의 T-N 처리효율을 얻기 위한 침출 수의 $\mathrm{BOD} / \mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 비는 유동상담체 투입시 약 2.5 . 유동상담체의 투입이 없는 경우는 약 3.5 정도가 적당한 것으로 나타났다.
4) 침출수의 생물학적 질산화/탈질과정에서
$\mathrm{NH}_{4}{ }^{+}-\mathrm{N}$ 산화량에 따른 알카리도 소비량비는 평균 $3.4 \sim 3.5 \mathrm{kgAlk} \cdot \mathrm{kgNH}_{4}{ }^{+}-\mathrm{N}^{-1}$ 정도를 나타냈다.
5) 생물학적 탈질궁정을 도입하므로서 $\mathrm{COD}_{\mathrm{cr}}$ 의 처리효율이 기존공정보다 평균 17% 이상 향 상되었고, 생분해성 유기물은 탈질공정에서 대 부분 소비되었으며. $\mathrm{A} . \mathrm{B}$ 계열 BOD 와 $\mathrm{COD}_{\mathrm{Cr}}$ 의 처리효율은 각각 $99.3 \%, 84.7 \%$ 와 99.5%, 85.4% 로 유동상담체가 투입된 B 계열이 다소 높았다. 또하, 메탄올에 대한 탈질균의 적웅기 간은 약 20 일 정도 필요한 것으로 나타났다.
6) 질산화조내 슬러지 침강성을 측정한 결과, 유 동상담체를 투여한 B계열의 슬러지가 A 계열 의 슬러지에 비하여 SV_{30} 가 약 2 배 정도 양호 하게 나타넌다.

참 고 문 헌

1. Robinson, H. D., "Generation and Treatment of Leachate from Domestic Wastes in Landfills." Wat. Pollut. Control. 465~478 (1982).
2. Robinson, H. D., Maris, P. J., "The Treatment of Leachate from Domestic Waste in Landfill Sites." JWPCF.. 57(1), 30~38 (1985).
3. Krug. M. N., Ham, R. K., "Analysis of Long-term Leachate Characteristics," SARDINIA 97. Sixth International Landfill Symposium, pp. 117~131(1997).
4. Anderson, P. R.. "Characteristics and Environmental Significance of Colloids in Landfill Leachate," Environ. Sci. Tech., 27(7). 1381~1387(1993).
5. Christensen T. H.. Sanitary Landfilling Process. Technology and Environmental Impact. Academic Press. pp. 186~187 (1989).
6. 환경관리공단. 수도권 매립지 침출수 처리장 운

영현황 및 적정처리 방안 연구보고서(1997).
7. 환경부, 폐기물관리법 (1997).
8. 환경부. 사용중인 생활폐기물 매립시설 개선대 책(1997).
9. U. S. EPA, Manual : Nitrogen Control, EPA/625/R-93/010(1993).
10. Siegrist, H., "Nitrogen Removal from Digester Supernatant-Comparison of Chemical and Biological Methods." Wat. Sci. Tech.. 34(1-2), 399~406(1996).
11. Sharma, B., Ahlert. R. C., "Nitrification and Nitrogen Removal," Water Research, 11. 897~925(1977).
12. Anthonissen, A. C., Loehr, R. C., "Inhibition of Nitrification by Ammonia and Nitrous Acid," JWPCF., 48(5), 835~852 (1976).
13. APHA-AWWA-WPCF, Standard Methods for Examination of Water and Wastewater, 18th ed.(1993).
14. 환경부, 환경오염 공정시험 방법(수질분야). (1992).
15. Soransen, B. H., Jorgensen, S. E., The Removal of Nitrogen Compounds from waste water, ELSEVIER Science Publishers (1993).
16. Keenan, J. D., Steiner. R. L., "Landfill Leachate Treatment," JWPCF., 56(1), 27 -33(1984).
17. Iwami. N.. "Treatment of a Landfill Leachate Containing Refractory Organics and Ammonium Nitrogen by the Micro-organism-Attached Activated Carbon Fluidized Bed Process," Wat. Sci. Tech., 26(9-11), 1999~2002(1992).
18. Boyle, W. C., Ham. R. K., "Biological Treatment of Landfill Leachate." JWPCF.. 46(5), 860~872(1974).
19. 환경부, Zeolite를 이용한 질소, 인 동시제거 공정 개발, 제 1 단계, 1 차년도 보고서(1995).

