# 미소전극 센서룰 이용한 탈질 생물막내의 이온 농도측정 

장 암 - 이쌍구 • 깁성민 •김인수<br>광주과학기술원 환경공학과 생물환경공학연구실

(2000년 6월 23 일 접수, 2000 년 8 월 8 일 채택)

# Measurement of Ion Concentrations in Denitrifying Biofilm by Microelectro-sensor 

Am Jang • Ssang G. Lee • S. M. Kim • In S. Kim<br>Bio-Environmental Engineering Lab.(BEEL). Department of Environ. Science \& Engineering. Kwangiu Institute of Science and Technology


#### Abstract

Microelectrode probe was made and applied to the biofilm in the biological treatment process as the state-of-art technology in order to actually measure the biofilm thickness. ionic concentration gradient. and material transport. etc. instead of classical theoretical approach. The working microelectrode, one of the main components of microelectrode probe, was easily contaminated and broken when determining the differences in the ionic concentrations through the measurement of biofilm's EMF (electromotive force). As a demonstration, two microelectrode probes were constructed in our lab for the measurement of the pH and $\mathrm{NO}_{3}^{-}$concentration in denitrifying biofilm. The microelectrode probe through the inner biofilm ( $350 \mu \mathrm{~m}$ from the surface of biofilm) showed that the pH was increased from pH 8 in the bulk solution to pH 8.3, on the other hand, the $\mathrm{NO}_{3}{ }^{-}$concentration was decreased from $30 \mathrm{mg} \mathrm{N} / \mathrm{L}$ in the bulk solution to $4 \mathrm{mg} \mathrm{N} / \mathrm{L}$.


[^0]
## 요 약 문

생물학적 수처리공정의 생믈막 (호기성 횩은 협기성) 내의 생뮬막 두꼐 및 이은들의 농도구배 둥에 대한 모델링율 위하여 종래에 이론적으로만 접근하던 방법 대신. 실제로 생물막을 이동하 며 측정하여 분석하는 첨단 연구 방법인 미소전극탑침울 제작하여 적용하였다. 미소전극 센서 장치에서 가장 중요한 요소 중에 하나인 working 미소전극탐침은 생물막내의 전위차(EMF, electromotive force) 클 측정할 때 오염과 파손 둥에 의해서 수명이 좖아지기 쉽기 때문에, 각 각의 working 미소전극탑침의 제작방법에 대하여 논의하였으며, 제작된 pH 와 $\mathrm{NO}_{3}^{-}$미소전극 탐침으로 탈질 미생물막 이온들의 농도률 막 깊이별로 축정하였다. 미소전극 센서장치에 의한 측정결과. 탈질 미생물막 내부에서의 (생물막 표면에서 약 $350 \mu \mathrm{~m}$ ) pH 는 8.3 정도로 벌크용액 상(bulk solution)의 pH 8 보다 약간 상숭하였으며, $\mathrm{NO}_{3}{ }^{-}$의 농도는 벌크용액상의 $30 \mathrm{mg} \mathrm{N} / \mathrm{L}$ 놓도에서 최중 $4 \mathrm{mg} \mathrm{N} / \mathrm{L}$ 정도로 나타난다.

[^1]
## 1. 서 론

국내의 하•폐수처리장에서 퐝범위하게 이용되고 있는 활성슬러지 공겅과 같은 예는 예측되지 못한 유입수의 과부하로 인해 유훌수질의 급격한 변화를 초래한다. 툑히 난분해성 및 독성믈질들의 유입으로 인한 시스탬 성능의 저하가 일시적 흑은 장기적으로 발생되고 있으며, 일⿱ㄹ 다시 정상상태로 복원하는데 상당한 시일이 소요되고 있는 실정이다. 또한 국내 하수처리장으로 유입되는 하수는 낮은 $\mathrm{C} / \mathrm{N}$ 비로 인 해 영양염류 제거룰 위한 고도처리 공정 도입시 운 영이 어려운 상황이다. 따라서 이와 같은 활성슬러 지 공정의 고효율을 위해 외부로부터 다양한 유기탄 소원올 추가로 공급하는 방안, ${ }^{1)}$ 공정을 변형하는 방 안, ${ }^{2.3)}$ 고놓도•고효율의 미생뮬 부착에 의한 생물 막 공정 ${ }^{4)}$ 둥 현재 여러 가지 공정이 개발되고 있으 나 각 공정에 대한 최적의 운전체계가 아직까지는 확립되어 있지 않은 상태이다. 하지만 생물막 공정 은 성능과 冝율의 우수성으로 최근에 많은 판심올 끌고 있으며, 특히 이들 공정은 초기운전시 담체표 면에 생믈막울 뺑ㄹㅡㅔ 형성시키고. 헙기 • 호기성 미 생물의 적절한 두께와 목표 오염물(target compounds) 을 분해할 수 있는 미생물을 고농도로 유지 하는 것이 공정의 성능을 좌우할 수 있다. 하지만 현 재 국내에서 연구 개발중인 생물막 굥정들온 전체

공정의 설계에 중심적인 역할을 함에도 불구하고 생 물막내에 요구되는 기질의 특성과 미생물의 특성 분 석울 명확하게 규명하지 않고 종래의 생물막 처리성 능 평가방법인 생믈막 표면적당 기질제거율의 측정 결과에 의존하여 왔다. ${ }^{5)}$ 즉, 고효욜 처리를 위한 기 존 생물막의 동력학적인 연구에서는 생물막을 불랙 박스(black box)처럼 단순화하여 수학적으로 모델 링 하였으며, 이에 근거한 해석결과를 바탕으로 반 옹기의 유입수와 유출수의 조건변화만으로 처리효 욜을 높이려고 했다. 따라서 기존에 연구중인 생물 막 공정들은 효율적인 자동화 시스템이나 정확한 공 정 분석을 이루지 못하고 있는 실정이다. 그러므로 하-폐수처리장의 생물막 공정올 좀 더 고도. 효율 화하기 위해서는 톡정성분(target component)올 잚온 시간 내에 간편하고 정확하게 온라인 (on-line) 으로 정량하는 것이 필요하다.
pH 전극에서 시작된 미소전극 센서장치(micro-electro-sensor)는 미소전극탐침 (microelectrode) 의 측정지름이 $5 \sim 10 \mu \mathrm{~m}$ 에 불과하고 쫢은 시간내 에 퓩정성분울 측정할 수 있기 매문에 분석수단으로 의학과 생뮬학 분야 등에서도 매우 급속히 효과적으 로 적용되고 있다. ${ }^{5)}$ 또한 최근에는 미소전극 센서장 치의 다양한 화학물질 검출센서와 선택성이 높은 센 싱재료 개발 둥으로 다수의 환경분야의 연구자들에 의해서 미소전극 센서장치률 이융한 생물막내의 실

험결과들이 발표되고 있다. ${ }^{6-12)}$ 예률 들면, Horn 등 ${ }^{13}$ 과 Xia 둥 ${ }^{14)}$ 은 미소전극 센서장치를 이용하여 막 내부의 기질전환과 믈질이동(mass transport) 에 대한 실험계수률 보여주었으며. Bishop 둥 ${ }^{15}$ 은 oxygen, sulfide, ammonium, pH , 산화 • 환원 전 위차(redox potential)의 미소전극탐침 둥올 이용 해 생물막 내부의 기질농도 변화와 혐기 - 호기성 막 의 경계률 보여주고자 하였다. 하지만. 이러한 국제 적인 연구경향에도 불구하고 국내애는 아직까지도 이에 대한 연구가 초보적인 수준에 있으며. 운영되 고 있는 생물막 공정의 최적화률 위해서라도 이에 대한 기초적 연구가 절실히 퓔요할 것으로 사료된 다. 현재까지 발표된 다수의 연구논문들은 미소전국 센서장치로 생물막 내의 기질 둥의 프로파일을 측정 하는 것올 주목적으로 하면서 그 옹용범위률 확대시 키교 있다. 그러므로, 본 연구에서는 미생물막을 이 용한 시스템 적용시 공정 stage녈 최적의 공정설계 와 최적 모니터림 시스템의 구축에 기반이 되는 기 초 데이터률 얻기 위해 기존에 개발된 미소전극 센 서장치의 제조원리 및 방법 둥에 대해 논의하며. 이 들 미소전극 센서장치를 이용하여 막내의 탈질 반웅 시 기질전환의 농도변화률 얻기 위해 인공적으로 만 든 탈질 생물막내에서의 기질농도 프로파일율 도출 하고자 한다.

## 2. 실험방법

## 2.1. 미소전극 센서장치

미생물막 내부로의 기질농도는 bulk상의 농도와 다르고 반웅에 관계되는 미생물막내의 반응상수나 동력학적 계수의 산정이 어럽기 때문에 본 실험에서 는 미소전극 센서장치률 이용하여 막내의 정확한 기 질의 농도변화를 측정하고자 하였다. 생물막내의 기 질 농도률 측정하기 위해 본 실헙에 사용된 미소전 극 센서장치는 working and reference microelectrode, anti-vibration table and faraday cage, power microsensor, motorized micromanipulator and controller. dual light guide and stereozoom microscope, data recording system


1. reference microelectrode 2 . working microelectrode
2. biofilm
3. micromanipulator
4. faraday cage
5. power microsensor
6. data recording system

Fig. 1. Microelectro-sensor settings in faraday cage to measure EMF(electromotive force) in denitrifying biofilm.

둥으로 구성되어 있다(Fig. 1).
특히 미소전극 센서장치에서 가장 중요한 요소 중 에 하나인 working 미소전극탐침(microelectrode) 온 생물막내의 전위차(EMF, electromotive force) 률 측정할 때(Fig. 1) 오염과 파손 둥에 의해서 수 명이 좛아지기 섭기 때문에, 기존의 다수 연구자들 은 working 미소전극탐침을 직접 실험실에서 제작 하여 실험에 사용하였다. ${ }^{6-12)}$ 따라서 본 연구에서도 생물막내의 선택성 이은 $\left(\mathrm{pH}, \mathrm{NH}_{4}^{+}, \mathrm{NO}_{3}^{-}\right)$과 용존 산소(DO. dissolved oxygen) 농도률 측정할 수 있 는 working 미소전극탐침을 일부 제작하여 사용하 였다. Fig. 2(a)에 나타난 working 미소전극탐침의 제작과정올 요약해보면, 이온선택성 미소전극탐침 과 DO 미소전극탐침올 아래 세부적인 제조방법에 의해서 Fig. 2 (b)와 같이 제작한 후 1 차 검량선 (pre-calibration)을 작성하여 검량선울 평가한 후 에 적절한 미소전극탐침을 선택하고, 실험이 끝난 후에 2차 검량선(post-calibration)을 다시 작성하 여, $1 \cdot 2$ 차 검량선의 평균올 최종 검량선으로 채택 하였다.
이온선택성 미소전극탐침과 DO 미소전극탑침의 세부적인 제작과정은 다음과 같다. 이온선택성 미소 전극탐침은 이온 교한액막 용액과 전해질 용액을 교 환하여 각종 이온선택성 미소전극탐침 $\left(\mathrm{pH}, \mathrm{NH}_{4}{ }^{+}\right.$, $\mathrm{NO}_{3}^{-}$)을 제작할 수 있다. 먼저 glass capillary tubing(borosilicate with filament. 외경: 1.2 mm . 내경 : 0.69 mm . 길이: 15 cm . Warner Instrument Corp.)을 수평 puller(Sutter Instrument


Fig. 2. Flow chart to make working (oxygen and ion selective) microelectrode.

Co .)에 셋팅한 후 일정조건하에서 잡아당긴다. 꿓어 진 tubing올 현미경으로 주시하면서 tubing의 선단 (tip) 크기가 $3 \sim 5 \mu \mathrm{~m}$ 가 되도록 다시 자른 후에 tubing의 선단 부분이 소수성올 띄도록 하기 위해 시란용액 (silanizing agent. N.N-dimethyltrimethylsilylamine)에 약 30 초 동안 담근 후. 오분 $\left(180^{\circ} \mathrm{C}, 24\right.$ 시간)에서 열을 가한다. 열을 가한 후 tubing에 전해질 용액 ( pH microelectrode: 50 mM sodium phosphate 용액 ( pH 7 )과 0.3 M KCl . $\mathrm{NH}_{4}{ }^{+}$microelectrode; $0.03 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ 과 0.03 M $\mathrm{KCl}, \mathrm{NO}_{3}^{-}$microelectrode; 0.05 M KNO 3 와 0.05 M KCl )으로 후충전(back-fill)시킨 후 칵테 일용액(ionophore I, Fluka)으로 선충전(frontfill)시킨다. 끝으로, $10 \%$ cellulose acetate 용액 에 빠른 시간내에 접중시킨 후 BSA (bovine serum albumin)용액에서 경화시켜 tubing의 선단 부분에 교차-연결된 단백질(cross-linked protein) 박막울 입힌다. pH 의 검량선온 $\mathrm{pH} 4,5,6,7,9,10$ 의 표 준용액을 이용하였으며, ammonium과 nitrate는 $10^{-1} \sim 10^{-4} \mathrm{M}$ 농도를 가ㄱㅏㅏ 제조하여 사용하였다.
DO 미소전극탐침의 반웅기구는 아직 명확하게 규 명되지 않았으나, 가장 흔하게 쓰이는 Clark type 의 DO 미소전극탐침에서는 용존산소가 미소전극탐 침의 membrane올 통과(diffusion)하여 백금전극 (cathode)쪽으로 이동하면, 염소 이은으로부터 떨 어져 나은 전자와 반옹하여 물분자로 업게 환원되며

이때의 전류값(pico Amper)으로 농도률 계산할 수 있다는 것까지 밦혀져 있다. DO 미소전극탐침의 제 작과정은 glass capillary tubing(borosilicate, 외 경 : 1.2 mm , 내경: 0.69 mm , 길이: 15 cm , Warner Instrument Corp.)을 수평 puller에 셋팅 한 후 일정조전하에서 잡아당긴다. 꾾어진 tubing 을 현미경으로 주시하면서 tip 크기가 $2 \sim 3 \mu \mathrm{~m}$ 되게 자른다. 잘려진 tubing의 선단부에 약 $10 \sim 100 \mu \mathrm{~m}$ 정도 공간적인 여유률 두고 합금(LMA-117, Small Parts. Miami. FL: $44.7 \%$ Bi. $22.6 \% \mathrm{~Pb}$. $19.1 \% \mathrm{In}, 8.3 \% \mathrm{Sn} .5 .3 \% \mathrm{Cd}$ )으로 채운다. 생물 막 탑침시 막의 햬손을 막기 위하여 tubing 선단부 를 beveller(Sutter Instrument Co., model: $\mathrm{BV}-10 \mathrm{C}$ )로 비스듬히 자르고 곱게 끝마무리를 한 다. 끝으로, tubing의 선단부를 금으로 도금 처리한 후 전선율 연졀한다. 제작된 DO 미소전극탐침이 극 성울 갖도룍 24시간 정도 polarization 시킨다. DO 미소전극탐침의 검량선 작성올 위해 $21 \pm 0.3^{\circ} \mathrm{C}$ 온 도뷸 유지할 수 있는 water bath(Brinkmann Instruments. Inc.. Model: Immersion thermostat E 100)에서 질소가스 $100 \%$ 와 공기를 사용하 였으며 이 두 점의 검량선을 확인하기 위해 질소와 산소 $(50: 50, \mathrm{v} / \mathrm{v})$ 의 흔합가스률 사용하였다.

## 2.2. 탈질 생물막 형성

미소전극 센서장치(microelectro-sensor)는 많은 생물막 공정에서 웅용되어 사용될 수 있다. 본 실험 에서는 탈질 미생뮬막에 미소전극 센서장치률 이용 하여 탈질 미생물막 내의 깊이에 따른 기질의 농도 변화률 축정하고자 미생믈의 최적 생식환경 조건하 에서 미생믈 막을 형성시켰다. 실험예 사용된 탈질 미생뮬막 형성을 위해서 도시 하수처리장의 2 차 침 전조의 잉여 슬러지률 이용하여 먼저 2 일간 회분식 (batch)으로 운전하다가 연속식(continuous)으로 전환하여 일정 놓도의 인공폐수(탄소원으로 Glucose, TOC $70 \mathrm{mg} \mathrm{C} / \mathrm{L}$, 질소원으로 $\mathrm{NaNO}_{3}, 30 \mathrm{mg}$ $\mathrm{N} / \mathrm{L}$ )를 한 달간 feeding하여 미생믈막올 부착시켰 다. 또한 heating and cooling system올 이용하여 반웅조 내의 온도률 $30 \pm 1^{\circ} \mathrm{C}$ 로 유지시켜 주었으며 pH 범위도 7.8~8.0이 되도록 조절하였고. bulk상

에 잔류 DO 률 없애기 위해 질소가스를 희분식으로 운전할 때 불어넣어 주었다. 본 실헙에 사용된 접촉 여재 ${ }^{16)}$ 로는 직경이 $40 \sim 45 \mathrm{~mm}$ 이며 표면적이 1.0 $\mathrm{m}^{2} / \mathrm{m}$ 이상인 로프형 접촉재인 HYUSUNG $\mathrm{BC}^{\text {PLUS }}$ 를 사용하였고. 인공폐수의 유입수와 유출수 용액의 분석방법은 Standard Methods ${ }^{171}$ 에 준하였다.

## 3. 결과 및 고찰

## 3.1. 선택성 이온과 DO 미소전극탐침

미소전극 센서장치로 선택성 이은을 측정하기 위 해서는 분석대상이 되는 이온에 선택적으로 반웅하 는 working microelectrode와 reference microelectrode률 합께 시료속에 넣어 Nernst식올 기초 로 한 양전극간의 전위차(EMF, electromotive force)를 측정하여 목적 이온농도률 측정할 수 있 다. 이론적인 전위차는 다음 식 (1)로부터 구할 수 있다. 이온할량의 역수의 대수를 pX 로 나타내면. $25^{\circ} \mathrm{C}$ 에서 1 pX 변화할 때. 전위차는 1 가 이온에서 $59.16 \mathrm{mV}, 2$ 가 이온에서는 $29.58 \mathrm{mV}, \mathrm{n}$ 가 이온 에서는 $59.16 / \mathrm{n} \mathrm{mV}$ 로 변화하게 된다.

$$
\begin{equation*}
E=E_{0}-\frac{R T}{n F} \log (a) \tag{1}
\end{equation*}
$$

여기서, E : 시료의 전극과 비교전극간의 전위차 $(\mathrm{mV}), \mathrm{E}_{0}$ : 기준 전위차 $(\mathrm{mV})$ 전극의 구조 혹은 비 교전극의 종류 및 구조에 의한 고유값. R : 기채상수 $(1.987 \mathrm{cal} / \mathrm{mole}), \mathrm{T}$ : 절대온도 $(\mathrm{K})\left(0^{\circ} \mathrm{C}=273.15\right.$ K), n: 이온가수, F: Faraday 정수(96485 C), a: 이온활동도

하지만. 실제적인 결과에서는 이론적인 전위차보 다 다소 낮게 측정되었다. 이는 실내온도 차이와 미 소전극탐침의 제작과정에 따른 오차로 사료된다. Fig. 3(a)에서 보는 바와 같이. 각 pH 에 대한 전위 차의 값이 10 분 이상에서도 안정된 값올 보이며 한 농도에 대한 응답시간(response time)이 15 초 이 내로 나타나. pH 미소전극탐침이 생물막 내부로 이 동하면서 결과를 얻올 수 있는 시간(생몰막 두께와


Fig. 3. Calibration curve of pH microelectrode: (a) EMF(mV) vs. time (seconds), (b) EMF (mV) vs. pH.

필요 data수에 따라 다르지만 10 분 내외)동안에도 안정적으로 신뢰할 만한 결과가 나타날 것으로 생각 된다. 또한 Fig. 3(b)에서 나타난 바와 같이. pH 의 검량선은 처음 측정한 날로부터 7일이 지난 후에도 거의 드리프트(drift) 변화가 없이 안정적으로 나타 났다. 이로써 외적인 충격이 없는 한 pH 미소전극 탐침의 수명이 선택성 이온 미소전극탐침 중 가장 길 것으로 사료된다. 또한 산성 영역인 pH 4 와 pH 6 사이에서는 검량선의 기울기가 양의 값인 $23.4(\mathrm{mV} / \mathrm{pH})$ 를 보였으며, 반대로 알카리성 부분 인 pH 6 과 pH 10 사이에서는 음의 값인 -51.5 $(\mathrm{mV} / \mathrm{pH})$ 로 나타나 pH 6을 기준으로 2 개의 기울 기가 존재함올 알 수 있다. 본 실험에서는 탈질 미생 물막이 pH 7.8 이상을 유지하고 있기 때문에 검량 선의 기울기가 음인 것을 기준으로 하였다.

Fig. 4(a)에서 볼 수 있둣이, nitrate의 미소전극 탐침도 한 농도에 대한 안정된 값이 10 분 이상 지나 도 일정한 전위값을 유지했으며 웅답시간도 15 초


Fig. 4. Calibration curve of nitrate microelectrode: (a) EMF(mV) vs. time (seconds), (b) EMF (mV) vs. $\mathrm{NO}_{3}$ concentration).

이내로 나타낪다. 또한 Fig. 4(b)에 나타난 바와 같 이, $10^{-1} \mathrm{M}$ 에서 $10^{-4} \mathrm{M}$ 농도까지 상관관계 $\left(\mathrm{r}^{2}=\right.$ 0.9985 )가 높온 선형직선을 나타내었다. 하지만, 처음 검량선을 작성한 날로부터 3 일과 7 일이 지난 후에 nitrate의 검량선 기울기는 거의 변합이 없었 지만 검량선의 절편이 일정한 간격으로 낮아지면서 드리프트가 다소 변하였다. 하지만 $1 \sim 2$ 시간 정도 지난 후의 드리프트는 거의 변함이 없어 nitrate의 미소전극탐침도 생물막 내부에서 안정적인 결과률 나타녈 수 있으리라 생각된다.
pH 와 nitrate의 미소전극탐침과 달리. Fig. 5(a) 에서 나타난 ammonium의 미소전극탑침온 한 농도 값에 대해 15 분 경과 후 전위값이 다소 상숭하면서 시잔이 경과할수록 계속적인 상숭폭올 유지하였다. 또한 $10^{-1} \mathrm{M}$ 에서 $10^{-4} \mathrm{M}$ 농도에 대한 검량선의 상 관과곈ㄴㄴ 다른 미소전극탐침보다 다소 낮온 값 $\left(\mathrm{r}^{2}\right.$


Fig. 5. Calibration curve of ammonium microelectrode: (a) EMF(mV) vs. time(seconds), (b) EMF(mV) vs. $\mathrm{NH}_{4}{ }^{+}$concentration.
$=0.9688$ )을 보여주었으며 3 일과 7 일이 지난 드리 프트가 처음 검량선을 작성한 날과 상담하게 다른 값올 나타쌨으며 웅답시간도 30 초 이상으로 길게 늘어냈다. 따라서 ammonium의 미소전극탐침은 수 명이 쫆기 때문에 실험할 때마다 수시로 제작해야 하며 실헙이 끝나자마자 빠른 시간안에 재검량선을 작성해야 할 것으로 사료된다. 본 실험에서는 ammonium의 상관퐌계가 가장 줗은 $10 \sim 100 \mathrm{ppm}$ 사이 의 농도에서 재측정한 결과률 보여주었다.

DO 의 미소전극탐침은 보통 2 점 $\left(\mathrm{N}_{2} 100 \%\right.$, 공기) 의 검량선을 기준으로 한다. Fig. 6 에 나타난 바와 같이, 각 농도에 대한 DO 미소전극탐침의 웅답시간 은 5 초 이내로 좗았으며, 장시간 동안 한 농도에 대 한 결과도 안정적으로 유지됨으로써, 생물막 내부 이동시간에도 신뢰할 수 있는 결과값을 얻을 수 있 올 것으로 사료된다.


Fig. 6. Calibration curve of DO microelectrode: (a) Amper( DA ) vs. time (seconds), (b) Amper(pA) vs. oxygen concentration.

## 3.2. 탈질 생물막

미생물농도는 생물막 두께가 증가함에 따라 중가 하게 되지만 과도한 생물막 두께의 성장은 막내의 기질농도률 상대적으로 감소시켜 물질전달 제한상 태에 도달하게 된다. ${ }^{18)}$ 결과적으로, 막내에 존재하 는 미생물의 성장이 역제됨으로써 할성도의 저하 및 생물막 입자의 전체밀도를 감소시켜 오히려 생물막 공정의 효율을 저하시키게 된다. 그러므로 생물막 공정에서 최적의 미생물막 두께유지는 껄수적이다. 본 실험에서는 탈질생물막 형성시 벌크상의 용존산 소를 없애기 위해 질소가스률 먼저 주입하고 계속적 으로 $\mathrm{NO}_{3}{ }^{-}$올 공급함으로써, 막 내부에 서식하는 미 생물이 전자 수용체를 산소에서 자유에너지가 적은 $\mathrm{NO}_{3}^{-}, \mathrm{Fe}^{3+}, \mathrm{SO}_{4}{ }^{2-}$ 으로 바꾸어 ${ }^{19)}$ 막내부가 무산소 (anoxic) 상태가 될 것으로 사료되었다. Fig. 7에서 나타난 바와 같이, bulk상에서 pH 는 8 올 유지 하고


Fig. 7. Variation of pH and $\mathrm{NO}_{3}^{-}$concentration in denitrifying biofilm.

있으나 약 $100 \mu \mathrm{~m}$ 막 깊이에서는 pH 8.3 정도로 약간 상숭하고 있어 탈질 미생물막에서 알카리도가 상숭되그 있음을 알 수 있다. 또한 $\mathrm{NO}_{3}{ }^{-}$의 농도는 초기 벌크의 농도 $33 \mathrm{mg} \mathrm{NO}_{3}^{-} / \mathrm{L}$ 에서 막 깊이 150 $\mu \mathrm{m}$ 에서 $\mathrm{NO}_{3}{ }^{-}$의 놓도가 급격하게 감소하고 $300 \mu \mathrm{~m}$ 막 깊이 이상에서는 $4 \mathrm{mg} \mathrm{NO}_{3}^{-} / \mathrm{L}$ 놓도로 일정하게 유지되었으며 벌크상의 DO 는 거의 측정되지 않았다.

## 4. 결 론

본 실험에 사용된 pH 와 nitrate 미소전극탐침은 장기간 측정시간에도 안정적인 결과값을 보여주었 4 ammonium의 경우에는 시간경과에 따라 전위값 이 다소 상숭되게 나타넛으며 웅답시간도 길게 늘어 낪다. 따라서 ammonium의 미소전극침의 검량선의 상관관계가 다론 미소전극침보다 낮게 나타넛다. 또 한 모든 미소전극침이 벌크상에서 생물막으로 이동 할 때 미소전극탐침의 막부분이 오염되어 드리프트 가 변할 수 있다. 그러므로 측정 후 바로 후검량선 (post-calibration)을 작성하여 전검량선 (precalibration)과 평균값으로 나타내야 오차를 줄일 수 있다. 미소전극침을 이용하여 탈질 미생물막의 nitrate의 놓도를 축정한 결과 $150 \mu \mathrm{~m}$ 막 깊이에서 급격하게 낮아져 $300 \mu \mathrm{~m}$ 막 깊이 이상에서는 4 mg $\mathrm{NO}_{3}^{-} / \mathrm{L}$ 농도로 일정하게 유지되였다.

본 실험에 사용된 미소전극 센서장치는 웅용기술 범위에 따라 국내의 각종 실험에 옹용뒬 수 있으리 라 사료되며 또한, 빠른 실시간의 데이터 도출율 이

용해 수질모니터링과 제어장치의 기초자료로도 웅 용 및 활융이 가능할 것으로 기대된다. 하지만 아직 까지는 실제 공정 적용시 공존이온 존재 둥의 방해 효과로 인해 정량 측정의 어려움, 미소전극탐침의 짧은 수명. 그리고 실제 공정상에서 야기되는 다양 한 문제점에 대한 연구 둥이 부족하기 때문에, 계속 적인 미소전극탐침의 개발 동향과 종류•원리 및 조 성방법 둥에 대한 심도깊은 연구와 방해효과에 대체 할 수 있는 다양한 미소전극탑침의 개발 둥이 필요 할 것으로 사료된다.

## 사 사

본 연구는 광주과학기술원 환경모니터링 신기술 연구센터를 붕한 한국과학재단 우수연구센터 지원 금 및 두뇌한국(BK21) 프로그램의 지원에 의한 것 입니다.

## 참 고 문 헌

1. Yun. D. I., Lee, J. J., Kim, D. W., and Lee, K. Y.. "The effect of external carbon sources on batch denitrification process." Appl. Microbiol. Biotechnol., 26(2), 96~ 101(1998).
2. Liu, J., Li, W.. Wang. X., Liu, H., and Wang, B., "Removal of nitrogen from coal gasification wastewater by nitrosofication and denitrosofication." Wat. Sci. Tech.. 38(1), 36~46(1998).
3. Timberlake, D. L., Strand, S. E., and Williamson, K. J.. "Combined aerobic heterotrophic oxidation, nitrification and denitrification in a permeable-support biofilm." Wat. Res., 22(12). 1513~1517 (1988)
4. Helmer, C. and Kunst, S.. "Simultaneous nitrification/denitrification in an aerobic biofilm system," Wat. Sci. Tech., 37(4-5).

183~187(1998)
5. Harada, H., "미소전극을 이용한 생물막 중의 유기물농도 측정방법 개발," 첨단환경기술, 11. 24~31(1998)
6. Kuenen, J. G., Jørgensen, B. B., and Revsbech, N. P., "Oxygen microprofiles of tricking filter biofilms," Wat. Res., 20(12). 1589~1598(1986).
7. Cronenberg. C. C. H. and van den Heuvel. J. C.. "Determination of glucose diffusion coefficients in biofilms with microelectrodes," Biosensors \& Bioelectronics. 6. 255-262(1991).
8. de Beer, D., Stoodley, P., Roe, F., and Lewandowski. Z., "Effects of biofilm structures on oxygen distribution and mass transport," Biotech. \& Bioeng., 43. 1131~1138(1994).
9. van Loosdrecht, M. C. M., Tijhuis. L., Wijdieks, A. M. S.. and Heijnen. J. J.. "Population distribution in aerobic biofilms on small suspended particles." Wat. Sci. Tech., 31(1), 163~171(1995).
10. Zhang. T. C. and Bishop. P. L., "Evaluation of substrate and pH effects in a nitrifying biofilm." Water Environment Research, 68(7), 1107~1115(1996).
11. Rasmussen, K. and Lewandowski, Z., "Microelectrode measurements of local mass transport rate in heterogeneous biofilms." Biotech. \& Bioeng., 59(3), 302 ~309(1998).
12. Yu, T. and Bishop, P. L., "Stratification of microbial metabolic processes and redox potential change in an aerobic biofilm studied using microelectrodes," Wat. Sci. Tech., 37(4-5), 195~198(1998).
13. Horn, H. and Hempel. D. C., "Modeling mass transfer and substrate utilization in the boundary layer of biofilm systems." Wat. Sci. Tech., 37(4-5). 139~147(1998).
14. Xia, F., Beyenal, H. and Lewandowski, Z., "An electrochemical technique to measure local flow velocity in biofilms," Wat. Res.. 32(12). 3631~3636(1998).
15. Bishop, P. L. and Yu. T., "A microelectrode study of redox potential change in biofilms," Wat. Sci. Tech., 39(7), 179~185(1999).
16. 장 암, 김홍석, 김인수, "혐기/호기 순산소 생 물막공법에 의한 산업폐수의 유기룰 및 TKN 제거 성능평가," 대한환경공학회지, 22(5), 837
~847(2000).
17. APHA. Standard Methods for the Examination of Water and Wastewater. 18th Edn., American Public Health Association, Washington, D.C., USA(1992).
18. 김창원, "공기부상형 유동상 생물막반웅기에 의 한 고도처리기술," 첨단환경기술, 5. $2 \sim 8$ (1998).
19. 정재춘, "생물막의 미생물학적 측면," 대한환경 공학회지, 16(5), 589~600(1994).


[^0]:    Key Words : Denitrifying Biofilm. Microelectrode Probe, $\mathrm{pH} . \mathrm{NO}_{3}{ }^{-}$. EMF (Electromotive Force)

[^1]:    주제어 : 생뮬막, 미소전극탐침. $\mathrm{pH}, \mathrm{NO}_{3}^{-}$. 전위차

