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We extended a minimum spanning tree algorithm (Cho et al, 1997) by characterizing the mutually
independent cells with maximizing the grouping efficiency referring to few propositions developed by Shu,
1990 in cellular manufacturing system. Each row of the machine-part incidence matrix is regarded as a node
in a graph, and a distance function is defined for every pair of nodes. It shows that there are K mutually
independent cells in the cellular manufacturing system if only if there are K-1 arcs of length 1 in the
minimum spanning tree of the graph, and gives an effective policy for sub-cell formation from larger cells.

1. Introduction

Group Technology (GT) has been recognized as one
of the key factors to improve productivity of man-
ufacturing systems. Despite numerous economic benefits
and operational advantages offered by the GT
concepts, its real potential has not been fully
explored. A number of factors, including vul-
nerability to machine breakdown, under-utilization of
resources and eventual unbalanced workload dis-
tribution in a multi-cell plant in manufacturing
system, pose some problems when using GT
concept.

These problems mainly stem from somewhar
standard principles of GT, such as the avoidance of
interaction between the machine cells and part
families, and tendency to setting up permanent
idealistic cells which do not exist any bottleneck
situations, €tc.

For detailed review of GT and its advantages, see
Fazakerlay (1974), Ham et al. (1985), and Gallager
and Knight (1986). A recent survey on the US firms
that adopted GT showed that most of these forms
have made substantial improvement in various areas

which include throughput time, work in process,
material handling, fixcure for cell parts, setup time,
space, part quality, inventory, labor cost, job
satisfaction, etc.

One of the frequently used representations of the
GT problem is a machine-part incidence matrix {a;l
which consists of '1' (empty) entries, where an entry
1 (empty) indicates that machine 7 is used (not used)
to process part 7. Typically, when an initial machine-
part incidence matrix {a;} is constructed, clusters of
machines and parts are not visible. A clustering
algorithm allows transforming the initial incidence
matrix into a structured (possible block diagonal)
form. To illustrate the clustering approach to GT,
consider the machine-part incidence matrix (1).

Rearranging rows and columns in matrix (1) results
in matrix (2). Two machine cells or clusters MC-1 =
{2,4} and MC-2 = {1,3}, and two corresponding part
families PF-1={1,3} and PF-2 ={2,4,5} are visible in
matrix (2).

Clustering of a binary incidence matrix may result in
the form of mutually separable clusters or partially
separable clusters.

Mutually separable clusters are shown in matrix (2),
while partially clusters are presented in matrix (3).
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Matrix (3) cannot be separated into two disjoint
clusters because of part 5 from matrix (3) results in
the decomposition of matrix (3) into two separable
machine cells, MC-1={1,2} and MC-2={3,4} and
two part families PF-1={1,2} and PF-2={34}.
The two clusters are called partially separable
clusters and the overlapping part is called a
bottleneck part i.e. the part that is processed on
machines belonging to more than one machine cell.
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However, ways to handle a bottleneck part is to
use an alternative process plan which is frequently
available for many parts, to do subcontract, and
duplicate the bottleneck part. For example, assuming
that an alternative process plan for part 5 in matrix
(3) involves machine 2 and 4 would result in two
mutually separable machine cells. Alternative process
plans are frequently available for many parts. In
practical cases, not all components of a part family
can always be processed within a single cell. It is
obvious that grouping of parts with alternative
routes increases the likelihood of generating ideal
machine cells.

The components having operations in more than

one cell are called exceptional parts, and the machines
processing them are referred to as bottleneck machines.
The traditional transportation of exceptional parts
between cells can be eliminated by assigning a
sufficient number of bottleneck machines to ap-
propriate cells. Analogous to the bottleneck part, a
bottleneck machine is defined. A bottleneck machine
is a machine that processes parts belonging to more
than one cell, i.e. it does not allow for decom-
position of a machine-part incidence matrix into
disjoint submatrices.

For example, machine 3 in matrix (4) does not
permit decomposition of that matrix into two machine
cells and two part families. A way to handle a
bottleneck machine is to allocate the bottleneck
machines to the appropriate machine cells by ex-
amining the similarity between bottleneck machines
and structured machine cells. It results in the
efficient facilitation of material flows and easy to
implement for controlling the sizes of the machine
cells. It may increase the grouping efficiency.
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A way to decompose matrix (4) into two disjoint
submatrices is to use an additional copy of machine 3.
The latter leads to the transformation of matrix (4) into
matrix (5). Two machine cells, MC-1 ={1,2,3(1)} and
MC-2={3(2),4,5} and two corresponding part
families, PF-1={1,2} and PF-2 ={3/4,5,6} are shown
in matrix (5).

Different formulations of the GT have been
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attempted. The quadratic assignment formulation,
see Kusiak and Vannelli (1986), and the traveling
salesman formulation, see Lenstra (1973), are among
the most well-known ones applied integer pro-
gramming. However, these are difficult to solve and
there is no guarantee that optimal solution can be
obtained in reasonable amount of CPU time.

Another class of algorithm is the hierarchical
ordering method developed by McAully (1972), which
requires to choose a threshold value for partitioning
the machine cells. Another widely used one is the
permutation of rows and columns of the machine-
part incidence matrix shown in the conclusion
section.

These are short coming in each of these different
existing classes of formulations and algorithms. The
integer programming is difficult to solve, and the
choice of the threshold value in the hierarchical
ordering methods is arbitrary. The non-hierarchical
approach and the row and column permutation
method do not make explicit use of the intrinsic
properties between the machines. They implicitly
assume that if there exists some natural grouping
of these machines, then these grouping will appear
eventually in the final solution, even though no
proof of this has ever been done.

The ideal grouping for a given manufacturing
system will be such that the machines and the parts
can be partitioned into mutually independent cells
of the suitable sizes with no intercell flow of parts
between different machine cells. Though this ideal
situation rarely occurs in practical situation, one
would like to know what are the characteristics
exhibited by these independent cells if they do exist,
see Cho et al. (1997).

Therefore, the efficient way to identify these
independent cells and effective policy to guide to
partition the larger cells into smaller cells are
proposed in this paper.

2. Definition and Notation

A clustering algorithm allows transforming the
initial incidence matrix into a structured (possible
block diagonal) form. Thus the grouping of
machines and parts into families is equivalent to
rearrange the columns and rows of A so that there
are as many non-zero entries being grouped into
clusters as possible. The following notations are
used:

m = number of rows in A, ie., the number of
machines

n = number of columns in A, 7.e., the number
of parts

M =11, 2,..., m}, index set of rows

N =A{1,2,..., n}, index set of columns

M ={j € N: g; =1}, (the parts that will visit
machine 1)

N ={ieM: a =
process part j)

| S| = number of elements in S

K = a positive integer number, where 1 < K <
m, and 1 < K< g

1}, (the machines that will

Llet R, =12,...,.K be a partition of M and G,
i=1,2,...K be a partition of N, which is called R
is machine cells and C; is part families. If the rows
and the columns of A is arranged according to the
order they appear in R; and G respectively, it calls
(R, G) i=1,2,...,K, a diagonal block decomposition
of A, and (R, C) is called the ith diagonal block
or the ith cell, see Shu (1987).

Let e =total number of 1's in the diagonal

blocks, ey = total number of 1's not in the diagonal
block, and

A
¢ =2 |R||Cl, d = mn—ad

The cells (B, C) i=1,2,...,K are to be mutually
independent ( or the diagonal blocks are mutually
separable) if @ is zero. If a manufacturing system
can be decomposed into mutually independent cells,
then there will be no material flow between
different cells.

For a given mutually separable diagonal block decom-
position of A, say (R, G), i=1.2,..,K; if K is the
maximum number possible, i.e., any further decom-
position will result in non-zero entries oft the diagonal
blocks, Shu (1987) denotes (B, (), i=1,2, ..., K, the
maximum  mutually  separable  diagonal  block
decomposition of A, or simply maximum separable
decomposition.

Let S, 7 be two sets, the symmetric difference of
S, T is defined as follows:

SA T=(S—T) U(T-S)=SUT)—(SNT).
Then the distance between two rows 7,7 M can be

defined by d(i/)=|M A M|/ |M U M.
For a given diagonal block decomposition, (R;, C),
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1=1,2,....K, the distance between two different row
sets (machine cells) R, R, of Mis defined as follows:

d(Ry, R) = min {d(;,j) : i€ Ry, jE R}

Notice that if B, N\ R, # ¢, then d(Ry, Ry =
0. A weight function for each column with respect
to the machine cell is defined:

WG, R) = 3 ah | 25 ah

=1,2,...,.K, 7=1,2,....,n. Thus a weight function is
the function of nonzero entries of column ; in
machine group R.

3. Propositions

The minimum spanning tree (MST) algorithm will
decompose A into diagonal blocks, and characterize
the mutually independent cells using the spanning
tree obtained by the MST algorithm in Cho e 4/.
(1997), and the following propositions by Shu, 1990
are needed.

Proposition 1. Let (R, ), i=1,2,.,K, be a
mutually separable diagonal block decomposition of
A (not necessary maximum), then:

(a) d(R, RB) = 1 for all i-j

(b) If the decomposition is maximum

mutually separable, then for any he R; (i=1,2,...,
K), there exists k= R; such that d(k A < 1. In
particular, if S;, S is a partition of R, then d (S,
S < L

Proof.

(@) Let h& R, kE R, i % j. Since (R, ), (R,
C;) are mutually separable, M, U M, # ¢, hence,
My AN M=M, U M, we have d(}, H=1 for all h &
R, k< R; which gives d(R; R;))=1.

(b) If the decomposition is maximum

mutually separable, then each block (R, ()
cannot be further decomposed into mutually
separable diagonal blocks. Let ke R, the decom-
position {4}, R—{k} and the corresponding de-
composition of the column set C; will give non-zero
entries in the submatrix of (R, C). For the non-zero
off diagonal block entries of row h, there exists a
column % such that gy=1 for some p= Ri— {h}.
Otherwise the following will be a mutually separable
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decomposition of (R, C): ({k}, G (W), (R—1{k}, C
~C (W) where C; (W={; € C: ay=1}, where
non-zero on diagonal block entries of row h, there
exists a column j such k= R~ {C}. Therefore M n
M,~» ¢, thus d(h,p)<1. The argument for &Si,S)
<1 follows similarity.

Proposition 2. Suppose at certain iteration of the
MST algorithm developed by Cho, et al., 1997, 7
=min { 7,: jE M~V }=1 can be performed,
then, d(V, M-V)=1, where a tree of G is a
subgraph (V, H) of G with no cycles where V are
included in a set of nodes, and H is included in a
set of arcs in the graph, see Minicka (1978).

Proof. Let 4 & Vbe such that d(#, £=1. By choice
of b ;> meforalljE M—V,and d(i,) > 7; =
e =1ltorall /€ V, j& M~ V. Hence d(V, M—
=1.

Proposition 3. Suppose the minimum spanning
tree T is decomposed into K components (subtrees)
G=(R;, T;), i=1,2,....K, by deleting K-1 arcs in T,
all of which have arc length of 1. Then for each
column € N, we have w (4 R) = 0 or 1 for
i=1,2,...,K; and there exists exactly one R; such that
wlk RK)=1 and w(k R,)=0, h+ ]

Proof. By definition of w, Zk v w(§, R)=1 for all
7€ N. If there exists row set R, such that 0 < w
(#, Ry < 1 for some » & N, which implies that
there exists a row s € R, that g,=1, then another
row set R, such that 0 < w(x R) < 1, where r
= p, < {1,2,..,k} can be found, which implies
that there exists a row ¢ R, such that g,=1,
hence M, n M, # ¢ and d(s,)) <1, thus d(R),, R)<L.
However, this contradicts d(R), R)=1 for i # j by
proposition 1. Therefore, w ( & K;)=0 or 1 for all

i€ {1,.,k}. By 2o w(, R)=1 for all jE N,
there exists exactly one ; & {1....,k} such that w (&
R)=1.

Proposition 4. If there exists a maximum of K
mutually separable diagonal blocks in the machine-
part incidence matrix A, then the MST algorithm
correctly identifies these K mutually separable
diagonal blocks.

Proof. Let B denote the row set of block I (=1,2,..,k
of these mutually separable diagonal blocks.
Without loss of generality, let the initial row %
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chosen at the beginning of the algorithm be in B,
by Proposition 1(b), there exists # € Bi-{h} such
that d(kR)<1. If j & M-B,, then d(,hH=1. Also
from Proposition 1(b), d(Bi-V)<1 for any proper
subset Vof B, is shown. Thus [B; |—1 iterations, all
nodes adding to V' will be from the set B and 7,<1
for each < Bi-V.

When V=B,, the next incoming node will be 2=
M-B, with 7 ,=1 by Proposition 2. Let the label
on this k be [ 74 pl, and one arc (&p) of length
1 exists. Without loss of generality, assume k£ < B,
then in the next |B:|-1 iteration, all the nodes j
that are added to V will be from the set of Bs, with
;<1 if j # k Then, there will be exactly K-1 arcs
of length of 1 in the MST by using induction. By
deleting these K-1 edges, K subtrees G =(R,T;),
:=1,2,..K can be obtained, and it is not difficult o
see that the vertex set R, i=1,2,..K are the row
set B, 1=1,2,..K, different only in the ordering.

By Proposition 3, define C; ={; € N: d(j,R)=1},
the column set N is partitioned into K mutually
disjoint sets, and hence (R, C), i=1,2,...K, form
K mutually separable diagonal blocks of given
matrix.

Proposition 5. The machine-part incidence matrix A
has a maximum separable decomposition of K
diagonal block if only if there are exactly K-1 arcs
of unit length in the minimum spanning tree

obtained by the MST algorithm.

4. Grouping Efficiency

Using the grouping efficiency n as an objective
function for maximization has the advantage of
simultaneously maximizing the utility of the
diagonal block entries and minimizing the intercell
flows, where g is the weight assigned to the block
entry usage and (1—¢) will be the weight for the
zero entry usage in the off diagonal blocks.

To measure the quality of clusters, the following
grouping efficiency measure has been introduced as
GE = gm + (1—¢)m, where my = number of
entries "'1" in the diagonal blocks / total number of
elements in the diagonal blocks, #; = number of
entries "0" in the off-diagonal blocks / total number
of elements in the off-diagonal blocks, and 4 = a
weight factor having a value between 0 and 1. This
function is non-negative and its range is zero to one.

However, there is no good way of selecting the

value of ¢ published in the literature. If the value
of GE is one means that the matrix has a perfect
block diagonal form, and zero is the opposite case,
see Kumer and Chandrasekharan. (1990).

The grouping efficiency for the decomposition (&,
G), i=1,2,.,K, is given by n = g (a/d) + (1 ¢
(1— a/db). The objective is to find a diagonal block
decomposition of A which maximize the grouping
efficiency. The grouping efficiency objective function
was first proposed by Chandrasekharan and
Rajagopalan (1987).

Let (R, C) be a diagonal block decomposition of
A, not necessary mutually separable. If the current
decomposition has satisfied given requirements, it
may stop. Otherwise, it can be further decomposed
some of the existing blocks to form smaller blocks.
Without loss of generality, let R be too large and
we want to further decompose it into smaller
machine cells. Therefore, the following proposition
states a necessary and sufficient condition of what
type of decomposition will give a higher grouping
efficiency.

Proposition 6. Suppose (R, () is decomposed into
two diagonal blocks (R1(), G()), ; = 1, 2; then
the new grouping (Ri(7), GG, 7 = 1,2; (R, (),
i = 2,3, .., K, will have greater grouping efficiency
if only if,

glad—Ba/dd— B} <(t—q){Ba-ad/d
(@+ 8},

where o= ZMHH w (j, RZ(Z)) |N]] +2ie(‘\<2‘r w(],
R1(1) [N,

and A= |R (V| |G @] + |R @] |G QD]

Proof. The grouping efficiency of the diagonal
block decomposition (R, C;),i=1,2,..K, is n = g
(e/di) + (1-g)(1- ey/db). First observe that a is the
number of non-zero entries in the off diagonal blocks
of (R (), Ci (4, 7=1,2 with respect to the block
(R, C).

For the new diagonal block decomposition, (R
0, C G, 7=1,2; (R, C),i=1,2,... K, the number of
non-zero entries inside the diagonal blocks is e- 4,
and that outside the diagonal blocks is @+a. Thus
the new grouping efficiency can be defined as
follows:

N =gla—a)/(d—B)+1—9(U—(ata)/ (bt
B n'>n if and only if g((er— @)/ (di— B)) + (1~
QI —~at+a)/(d+ ) >qglald) + (11—l e/
a), simplifying those equations, gladi—Be | d



6 Moon-Soo Cho + Byung-Hee Chung

(d— B}t <(U-@{Bea-ad/d(d+ B} can
be defined.

If (R, Cp) is a diagonal block, recall that (R, 7))
is a subtree, there are exactly |R,] —1 arcs in (R,
Ty. By deleting any one arc in (R, Tp), R, is
partitioned into two disjoint sets, say Ry (j), j = 1,
2. For each part k& G, recall that the weight of
k with respect to these machine cells is given by W
(o RyG) =2Zeemsr anl |N#l, = 1, 2,

Part k is assigned to the subgroups which gives
the greater weight. The following formally states
the subtree partition procedure. Let Rp be the
machine cell that one want to test and the
corresponding subtree be given by (&, 7). Then
the subtree partition procedure will be as follows:

Step 1. Use proposition 6 to identify the arc in the
subtree (R, 7, which gives the greatest
increase in grouping efficiency. If no arc is
found, return: else go to step 2.

Let R,(1), R,(2) be the machine cell
obtained after the deletion of the arc
identified in step 1. For each part k& C,
determine the weight of k with respect to
the two machine cells R,(5), j=1,2. If w
(B Rpy(1) = w(k Ry(2)), assign k to G,
(1), else assign £ to C,(2), and return.

Step 2.

The revised MST algorithm increasing for the
grouping efficiency will be follows:

Step 1. Use the MST algorithm developed by Cho,
et. al., 1997 to find the minimum spanning tree.
Identify the set of arcs with length 1 in the
spanning tree obtained in step 1. Delete all
these arcs and form the machine cells and
part families as in step 3 of the original
MST algorithm. Notice that the cells
identify in this step are mutually inde-
pendent,

If all machine cells are of the desirable sizes
or no subtree partition which increase the
grouping efficiency can be identified, stop;
otherwise use the subtree partition proce-
dure to decompose the larger cells into
smaller cells.

Step 2.

Step 3.

5. Illustrative Example

We will apply the revised MST algorithm to solve
an example in Burbidge (1963), which original

matrix is shown in <Figure 1>. Applying the
proposed MST algorithm to solve the problem, the
minimum spanning tree of the problem is given in
<Figure 1>, and the length of the arcs in the
spanning tree is given in <Table 1>.

Table 1. Arc length of the arcs in the minimum
spanning tree in <Figure. 1>

Arc Length Arc Length
(1, 1 1.000 (15, 12) 0.375
(1, 8) 0.444 8,7 0.444
(1, 20) 0.889 (8, 3) 0.222
(11, 16 0.111 8, 17) 0.000
(16, 15) 0.125 (3, 18) 0.923
3, 19) 0.125 (20, 9) 0.333
(18, 2 0.222 9, 10) 0.167
(2, 4 0.333 (10, 6) 0.143
(2, 14) 0.000 ‘ 6, 9) 0.429
4, 13) 0333
Py 11111 12222222222333333
123456789012345678901234567890123435
11 1 1 1 1
2 } 1 1 i1 1 1 1 {
3111 1 i 1 1
4 I 1 11 1 i
5 i 1 1 1
6 1 1 1 1 i 1 1
71 1 1 1 1 1 H
8t | 1 1 1 i i i i
9 1 i 1 1 1
10 1 1 { 1 i |
13} 1 1 i 1 i { 1 1 1
12 1 1 | 1 1 1
13 i 11 1
14 1 i i 11 H ] 1 1
15 i 1 1 1 1 1 |
16 1 1 3 1 i ! 1 i
1741 1 1 1 1 1 1 1 1
18 1 1 11 1 1 H
19 1 i 1 1 1 1 1
20 1 1 1 1 i
Figure 1. Machine- part incidence matrix.
The average arc length of this spanning tree is

0.346. There are 7 arcs in the spanning tree with
arc lengths greater than 0.346. However, only 3 of
these 7 arcs are substantially greater than the
average arc length, they are (1, 11), (3, 18), (1, 20).

There is only one arc in the minimum spanning
tree with arc length equal to 1, hence by the
Proposition 4 and 5, there are only two mutually
independent cells in the manufacturing system.

If we take q = 0.2, then the grouping efficiency
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attained by the grouping will be 0.864. Using the
Proposition 6, there are all together 7 arcs whose
deletion from the current subtree will give new
grouping with higher grouping efficiency. The arc
which gives the highest is (3, 18). Deleting (3, 18)
from the subtree, there are three machine cells and part
families, and the new grouping efficiency is 0.904.

Applying the Proposition 6 again, there are 6 arcs
whose deletion will give a higher grouping efficiency
than 0.904. The one which gives the highest is (1,
20). The grouping efficiency of this decomposition
is 0.950. There are four machine cells and part
families and ey = 2.

Applying the Proposition 6 again, we find no
more arc in the subtree whose deletion will give rise
to a new grouping with higher grouping efficiency.
Hence the decomposition given in <Figure 2> is
the final matrix.

112222 1223333 Pt1rr223 111223
355703594691 18023527023847184692¢64
vt

1 i

1
3
7 b
t
L1

8
17
1
12
15
16
19
2
4
13
14
8
5 1
6 1t
9 11

1

11

!

[
P11
Pl I
t1 11 |

1
111

1

10 i
20 1

1 1
1 !
(I i
1 1

Figure 2. Final matrix with ¢ = 0.2, = 0.950, ¢ = 2.

A first glance at Proposition 6 will suggest that
it can be the right tools in hand, since it gives the
criterion to look for the kind of decomposition of
a diagonal block that will increase the grouping
efficiency. However, it is not too useful because
there is an exponential number of ways to de-
compose the diagonal block into two different
diagonal blocks. Therefore only those partitions as
indicated by the subtrees was considered in the
proposed algorithm.

6. Conclusion

In this paper, a heuristic approach for solving the

group technology problem is proposed with a
minimum spanning tree algorithm. The indepen-
dent cell has been characterized completely in
manufacturing systems.

Necessary and sufficient conditions for subtree
decomposition which may increase grouping effi-
ciency by characterizing the independent cells is also
discussed with propositions by Shu, 1990.

If the number of machines in machine group is
too large, it can be chosen to delete a suitable arc
from the subtree associated with machines in
machine group to form smaller machine groups.

To solve the matrix formulation of the group
technology problem, Seifoddini and Wolf (1986),
and Kusiak and Cho (1992) developed similarity
coefficient methods, and King (1980) and Chan and
Milner (1982) developed sorting-based algorithms.
The bond energy algorithms have been developed
by McCormick, et al. (1972), Slagle, et al. (1975),
and Bhat and Haupt (1976), and cost-based methods
have been developed by Askin and Subramanian
(1987), and Kusiak and Chow (1987).

The extended cluster identification algorithm by
Kusiak (1990), the within-cell utilization based
heuristic by Ballakur and Steudel (1987), and the non-
hierarchical clustering algorithm has been developed by
Chandrasekharan and Rajagopalan (1987).

However, the proposed algorithm in this paper
shows the detailed graph theoretical heuristic
approach which results in the strong grouping
efficiency. Although the proposed approach cannot
be more efficient than the other existing approaches
regarding to complexity, it can offer more flexibility
than most existing heuristic algorithms for the
group technology problem.

Another important feature of this paper is the ease
of the control of the size of the machine groups. If
the number of machines is too large, it can be
chosen to delete appropriate arcs from the subtree
associated with machines in machine group to form
smaller machine groups. Hence, it is efficient and
easy to implement for controlling the sizes of the
machine cells by allocating the bottleneck machines
into the appropriate machine cell. Thus it offers more
flexibility than most existing heuristic algorithms for
the group technology problem do.
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