삼백초 추출액의 견 및 면직뮬에 대한 염색성과 항균성

김병희 - 송화순
숙명여자대학교 의류학과

The Dyeability and Antimicrobial activity of Silk and Cotton Fabrics with Saururus chinensis Extract

Byung Hee Kim and Wha Soon Song
Dept. of Clothing \& Textile, Sookmyung Women's University, Seoul, Korea

Abstract

Dyeability and antimicrobial activity of Saururus chinensis on to silk and cotton fabrics has been studied. The dyestuff was extracted with distilled water. Silk fabric showed higher K/S value than cotton fabric at the same condition. And with the simmordanting by Fe, Cu gave good improvements of the K/S values. Surface color of dyed fabrics was various according to the used mordants: Cr mordanted fabric was to be cleared, Fe mordanted fabric was the greatest color difference. The fastness was significantly improved in mordanting. The Fe, Cu mordanted silk fabrics was the greatest antimicrobial activity.

Key words : dyeability, antimicrobial activity Saururus chinensis, K/S value, mordants, simmordanting

1. 서 톤

최근 환경에 대한 관심이 높아지면서, 염색 및 가공 분야 에서도 천연물질의 활용에 대한 중요성이 대두되고 있다. 이 에 따라 천연염료에 관한 연구가 활발히 진행되고 있으나, 염재의 종류에 따른 색상과 세탁견뢰도에 대한 연구(하경남, 1987 : 김광수, 1995 : 조숭식 등, 1996 : 주영주, 1998)가 대 부분으로, 일부에서는 기존에 사용하지 않은 새로운 염재의 연구(이현숙 둥, 1998 : 최석철 등, 1998 : 이전숙 둥, 1999 : 최석철 등, 1999 : 서명숙 둥, 2000)가 진행되고 있으나, 염 색재가 고가이며 과학적인 염색법에 의한 연구는 미홉한 실 정이다.

삼백초(Saururus chinensis)는 우리나라, 중국, 일본에 분포하 는 다년초로 성분 중, 정유성분은 methyl-n-nonyl-ketone, 잎에 탄닌, quercetin, quercitrin, isoquercitrin, avicularin, rutin, 뿌 리에 아미노산, 유기산, 당류, 및 hydrozylable tannin 0.48% 을 포함하고 있고 한방에서 알리워진 약효로서 전초는 소종해독, 청열이수, 항암둥에 효능(육창수, 1989)이 있다고 한다. 이와 같 이 삼백초는 강한 항균작용이 있고, 세균 및 진균에 대한 살균 력이 있는 약초(곽재욱, 1988)이지만, 천연염료로서 염색에 이 용되는 경우는 거의 없는 실정이다.

따라서 본 연구는 전보(김병희, 2000)와는 추출용매를 달라

[^0]하여, 일반적으로 천연염색시 사용하는 증류수를 사용하여 색 소 추출 후, 농축하여 자동염색기에 의한 염색법의 과학화 및 염재가 지닌 생리활성 물질(항균성)이 있는지를 밝히고 천연염 색의 실용화를 도모하였다. 이에 본 연구는 염색성을 향상시키 기 위하여 $\mathrm{Al}, \mathrm{Cr}, \mathrm{Fe}, \mathrm{Cu}$ 금속염으로 매염처리시, 표면색의 변화에 따른 색차를 측정하고 염색물의 세탁, 드라이크리닝, 땀, 아이론, 마찰, 일광견뢰도둥올 측정하여 삼백초의 염색특성 및 항균성을 알아보았다.

2. 연구방법

2.1. 시료 및 시약

시료 : 염재로 삼백초(한국산)를 사용하였고, 시료는 KS K0905에 규정된 염색견뢰도 첨부백포용 견 및 면직물로 이의 특성은 Table 1과 같다.

시약 : 시약은 aluminium potassium sulphate(Akuri Pure Chemicals Co., Ltd), potassium dichromate(Shinyo Pure Chemical Co., Ltd.), ferrous sulphate(Shimakyu's Pure Chemical

Table 1. Characteristic of fabrics

Fabric	Weave	Yarn Number		Fabric counts (thread/5 cm)		$\begin{aligned} & \text { Weight } \\ & \left(\mathrm{g} / \mathrm{m}^{2}\right) \end{aligned}$
		Warp	Weft	Warp	Weft	
silk	Plain	21D	21D/2	276	192	25 ± 1
cotton	Plain	30 'S	36'S	141	135	100 ± 5

Fig. 1. Dyeing methods.

Co., Ltd.), cuppric sulphate(Shinyo Pure Chemical Co., Ltd)동 1급 시약을 사용하였고. 염재의 추출 용매는 중류수를 사용하 였다.

항균성의 사용공시균주는 Staphylococcus aureus(ATCC 6538), 배양액은 nutrient agar, nutrient broth, BHI Agar, TGE Agar(DIFCO, Germany), paper disk(Toyo Roshi Kaisha, Ltd, Japan)는 8 mm 를 사용하였다.

2.2. 싰험방법

색소 추출 : 삼백초 100 g 을 분쇄하여 중류수 $(1 \mathrm{~L})$ 를 용매로 하여 $90^{\circ} \mathrm{C}$ 에서 1 시간씩 4 회에 걸쳐서 추출하고, 이 추출액을 evaporator(Yamato, Japan)를 사용하여 각각 100 ml 로 농축하고, glass filter 3(IWAGI GLASS)로 감압 여과하여 색소원액으로 사용하였다.

적외선 분광 분석 : 염색에 사용할 삼백초의 색소성분을 확 인하기 위하여 농축액을 동결건조기(OPERON, 한국)를 사용하 여 $-80^{\circ} \mathrm{C}$ 에서 동결건조시켜 분말로 만든 후, KBr 법에 의하여 FT-IR(Perkin Elmer-Spectrum 2000 FT-IR spectrometer)로 측 정하였다.

염색 : 색소원액을 5% (예비실험 최적결과)로 회석하여, 욕비 $1: 50$ 의 조건으로 견 및 면직물을 자동염색기(아세아기공, ASA417)를 사용하여 Fig. 1과 같이 염색하였고, 매염제의 농도 5% (o.w.f.), $80^{\circ} \mathrm{C}, 30$ 분간 선, 둥시, 후매염법에 의해 염색하였다.

K/S 측정 : 염색된 각각의 시료에 대한 K/S값은 computer color matching system(Datacolor, U.S.A. : 이하 CCM이라 함) 을 사융하여 측정하였다.

K/S값은 각 시료의 표면반사율을 Y filter로 측정한 후, Kubelka-Munk식에 의하여 다음과 같이 산출하였다.

$$
\begin{aligned}
& \mathrm{K} / \mathrm{S}=\frac{(1-\mathrm{R})^{2}}{2 \mathrm{R}} \\
& \mathrm{~K}: \text { 홉광계수 } \\
& \mathrm{S}: \text { 산람계수 } \\
& \mathrm{R}: \text { 표면반사 }
\end{aligned}
$$

표면색 몇 색차 측정 : 염색물의 표면색 및 색차는 CCM 올 사용하여 $\mathrm{L}^{*}, \mathrm{a}^{*}, \mathrm{~b}^{*}$ 값을 측정하고 이들 값으로부터 채도 (chroma)와 색차 $\Delta \mathrm{E}_{\mathrm{ab}}{ }_{\mathrm{ab}}$ 값을 구하였다. 여기에서,

$$
c^{*}=\sqrt{\left(\mathrm{a}^{*}\right)^{2}+\left(\mathrm{b}^{*}\right)^{2}}
$$

$$
\Delta \mathrm{E}_{\mathrm{ab}}^{*}=\sqrt{\left(\Delta \mathrm{L}^{*}\right)^{2}+\left(\Delta \mathrm{a}^{*}\right)^{2}+\left(\Delta \mathrm{b}^{*}\right)^{2}}
$$

염색견뢰도 : 세탁견뢰도와 드라이크리넝견뢰도는 launder-Ometer(KOA SHOKAI LTD, JAPAN)를 사용하여 각각 KS K0430, KS K0644, 땀견뢰도는 perspiration tester(sungshin testing M.C Co., KOREA)를 사용하여 KS K0715, 건 - 습마 찰견뢰도는 crockmeter(sungshin M.C Co., KOREA)를 사용하 여 KS K0650, 아이론견뢰도는 아이론견뢰도시험기(sungshin M.C Co., KOREA)를 사용하여 KS K0637, 일광견뢰도는 fade-O-meter(Atlas Electric Devices, Co., U.S.A)를 사용하여 KS K 0700에 준하여 측정하였다.

항균성측정법 ;

한천확산법
염재를 농축한 후, paper disk $(8 \mathrm{~mm})$ 를 사용하여 한천확산 법에 의하여 항균성을 확인하였다. 실험방법은 UV-Spectrophotometer를 사용하여 475 nm 에서 $52 \% \mathrm{~T}$ 로 희석한 균을 nutrient agar로 고화시킨 후, paper disk를 눟고, 농축액은 40 $\mu \mathrm{l}$, 대조는 추출용매만을 떨어 뜨려, $38^{\circ} \mathrm{C}$ 에서 24 시간 incubator에서 배양하였다.

균수측정법
염색된 시료와 매염제로 매염한 시료의 항균성을 균수측정법 에 의하여 측정하였다. 시료는 0.2 mg 을 2 cm 로 자른 후, 접종균 을 0.2 ml 접종하여 $38^{\circ} \mathrm{C}$ 에서 24 시간 incubator에서 배양하였다. 배양된 접종균은 salien buffer 20 ml 를 넣고, petri dish에 1 ml 씩 넣고 TGE agar를 넣고 잘 섞은 후. $38^{\circ} \mathrm{C}$ 에서 24 시간 incubator에서 배양하여 균수를 측정하였다.

균감소율 $(\%)=\frac{\mathrm{A}-\mathrm{B}}{\mathrm{A}} \times 100$
A : 미처리포의 균수
B : 처리포의 균수

3. 견과 및 고참

3.1. 색소푼석

Fig. 2는 삼백초 추출액의 FT-IR 스펙트럽 결과이다. Fig. 1 에서와 같이, $3401 \mathrm{~cm}^{-1}$ 부근의 $\mathrm{OH}, 2925 \mathrm{~cm}^{-1}$ 부근의 CH , $1618 \mathrm{~cm}^{-1}$ 부근의 $\mathrm{C}=\mathrm{C}, 1049 \mathrm{~cm}^{-1}$ 부근의 C-O peak를 통하여 주색소 성분인 quercitrin은 flavonoid계임올 확인할 수 있었다.

3.2. 매엽방법 및 매염제의 종류가 KSS에 미치는 영향

Fig. 3, 4 는 염색한 견 및 면직물의 매염법에 따른 K / S 를 측정한 것으로 견직물의 경우, 매염시에 K/S값이 높게 나타났 다. 그리고 Al 은 동시매염에서, Cr 은 후매염에서, Fe 과 Cu^{2} ㄴ 동시매염에서 K/S 값이 크게 나타나 염착성이 증가하였다.

면직물의 경우에는 후매염을 제외하고는 무매염시보다 매염 시에 K/S값이 높게 나타났고, $\mathrm{Al}, \mathrm{Fe}, \mathrm{Cu}$ 는 동시매염에서 K / S

Fig. 2. FT-IR spectrum of Saururus chinensis.

Fig. 3. Effect of mordanting methods on the K/S values of silk fabric dyed with Saururus chinensis extracted by water.

값이 높고 Cr 은 선매염에서 염착이 잘되는 것으로 나타났으나 K / S 값이 낮아 이에 대한 후속 연구가 계속되어야 하겠다.

Fig. 4. Effect of mordanting methods on the K/S values of cotton fabric dyed with Saururus hinensis extracted by water.

이상의 결과로부터 견 및 면직물 염색시 매염한 경우, 면 보다 견직물이, 매염제 중에서는 Fe, Cu 매염제, 그리고 매 염법은 동시매염법이 K/S값이 크게 나타나 염착성이 증가 하였다.

3.3. 매염방법 및 매염제의 종류가 색차에 미치는 영향

Table 2 는 견, 면직물의 매염법 및 매염제에 따른 표면색, 및 색차를 측정한 것으로 견직물의 경우, 선, 동시, 후매염을 했을 경우, 무매염포에 비해 명도는 dark하게 나타났다. Al, Cu 매염시선, 동시매염법과 Cr 매염시의 선, 후매염법에서 redish, yellowish한 것으로 나타났고, 채도도 가장 선명하게 나타넜다. Fe 매염시에는 선, 동시, 후매염법에서 greenish, bluish한 것으로 나타넜으며, 색차는 Fe 매염에서는 가장 크게 나타났다.

면직물의 경우에는, Al 매염시 후매염의 경우를 제외하고는

Table 2. Surface color of silk and cotton Fabrics dyed with Saururus chinensis extracted by water

Method	Mordant	Silk					Cotton				
		L*	a^{*}	b^{*}	c*	E	L*	a*	b*	c^{*}	E
	None	74.0	4.35	17.69	18.22		85.96	0.51	10.31	10.32	
		L	a	b	c*	E	L	a	b	${ }^{*}$	E
pre	$\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}$	-1.0	+0.7	+0.5	18.90	1.63	-0.08	+0.11	+0.15	10.47	0.20
	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	-3.4	+0.2	+5.0	23.12	6.05	-3.5	-0.1	+5.6	15.88	6.60
	FeSO_{4}	-10.8	-2.5	-3.4	14.40	11.60	-2.6	+0.2	+1.9	12.23	3.23
	CuSO_{4}	-7.4	+0.7	+0.7	19.04	7.46	-1.0	-0.2	+0.3	9.97	1.06
both	$\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}$	-5.5	+0.4	+8.3	26.38	9.96	-7.1	+1.7	+6.5	16.96	9.77
	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	-0.2	-1.5	+10.1	27.91	10.20	-3.6	+1.3	+5.8	16.24	6.94
	FeSO_{4}	-28.1	-4.5	-2.6	15.05	28.57	-19.6	-0.3	0	10.35	19.6
	CuSO_{4}	-14.5	+1.4	+6.0	24.34	9.46	-11.3	+2.3	+7.5	17.99	14.0
post	$\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}$	-2.2	-1.4	+9.1	27.00	14.76	+0.3	-0.03	+3.4	13.67	3.41
	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	-10.9	+1.8	+9.8	28.16	14.76	-2.2	+0.4	+1.4	11.73	2.64
	FeSO_{4}	-20.2	-4.6	-4.5	13.21	20.83	-8.8	-0.1	+0.8	11.13	11.03
	CuSO_{4}	-10.1	-1.1	+5.1	22.99	11.37	-3.7	-0.8	+2.6	12.95	4.59

무매염포에 비해 명도는 dark하게 나타났고 동시, 후매염에서 Cr 매염, 선, 동시매염에서 Al매염에서 redish, yellowish한 것 으로 나타났다. Cu 매염시에는 선매염법에 있어서 greenish, bluhish 하게 나타넜으며 색차의 경우에는 선매염시 Cr 매염, 동 시, 후매염에서는 Fe 매염시 가장 크게 나타났다.

색차 측정 결과, 매염에 의하여 견 및 면직물의 명도는 전체 적으로 거의 dark하게 나타났고, 매염방법 중에서는 동시매염 법, 매염제 중에서는 Cr 매염시 대부분 선명하게 나타났고, Fe 매염시 색차가 가장 크게 나타났다. 이는 삼백초가 flavonoid성 분을 가진 다색성 염료이며, 매염염료의 일종으로, 매염에 의 해 각각 다른 색상을 나타내는데, 이는 금속이온과 착화합물올 만들어, 정색 또는 침전되어 안정한 불용성 킬레이트 화합물올 생성하여 금속 특유의 색조로 발색하기 때문이다.

3.4. 염색견뢰도

Table 3~5는 동시매염법에 의해서 염색한견 및 면직물에 대 하여 드라이크리넝, 세탁, 땀, 마찰, 아이론, 일광견뢰도를 측정 한 결과이다.
Table 3에 나타난 바와 같이 드라이크리넝, 세탁견뢰도는 매 염시 4~5급이상의 우수한 견뢰도를 나타내었다.
Table 4에 나타난 바와 같이 엄색한 견 및 면직물의 땀견뢰 도는 매염제를 처리한 경우, 1 둥급 정도 향상되었고 산성 땀액 이 알카리땀액보다 견뢰도가 대체로 높은 것으로 나타났고, 첨

부백포 중 면이 땀에 의한 오염이 적은 것으로 나타났다.
Table 5는 염색한 견 및 면직물의 마찰, 아이론, 일광견뢰도 를 측정한 결과이다.
마찰견뢰도는 건마찰시 모두 견뢰도가 높았고, 아이론 견뢰 도는 매염제 사용으로 향상되는 것으로 나타났다. 일광견뢰도 는 견직물의 Al매염만이 3급으로 가장 높게 나타나, 이에 대한 후속 연구가 계속되어야 하겠다.

3.5. 항균성챡정

한천확산법 : Fig. 4는 paper disc의 한천확산법에 의한 농축 액의 균 저지대를 측정한 결과로, 메탄올 추출의 경우는 3 mm (김병희, 2000), 중류수 추출의 농축액의 경우는 2 mm 의 균저지대를 나타내어 항균성이 있음이 확인되었다.
균수측정법 : Fig. 6은 동시매염에서의 균감소율을 나타낸 것으로 견직물 경우, 면직물보다 높은 항균성을 나타냈고, 미 염색포의 경우에도 50.7% 의 균 감소율을 나타내며 매염처리 후에 항균성이 더 향상되는 것으로 나타났으며 동시 매염의 경우에는 Cu, Fe 매엄의 경우 90% 이상의 높은 항균성을 나 타내었다.

이는 메탄올 추출의 경우와 비교하여 볼 때(김병희, 2000), 메틴올 추출의 경우, K / S 의 중가로 항균성이 향상되는 것으로 사료되나, 증류수추출의 경우에도 매염시 항균성이 우수한 것 으로 나타났다.

Table 3. Drycleaning, Washing fastness of silk and cotton fabrics dyed with Saururus chinensis extracted by water

						COT	
Methods	Mordants						
			silk	cotton		silk	cotton
	None	4	4-5	4-5	4-5	4-5	4-5
	$\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}$	5	5	5	5	5	5
Drycleaning	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	5	5	5	5	5	5
	FeSO_{4}	5	5	5	4-5	5	5
	CuSO_{4}	5	5	5	4-5	5	5
	None	4	4-5	4-5	4-5	5	4-5
	$\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}$	4-5	5	4-5	5	5	5
Washing	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	5	5	5	5	5	5
	FeSO_{4}	4-5	5	4-5	4-5	5	4-5
	CuSO_{4}	4-5	5	5	4-5	5	5

Table 4. Perspiration fastness of silk and cotton fabrics dyed with Saururus chinensis extracted by water

	SILK							COTTON				
	acid			alkaline				acid			alkaline	
Mordants	Fade	Stain										
Mordant		silk	cotton									
None	4	4	4-5	4	4	4	4	4	4-5	4	4	4-5
$\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}$	4	4-5	5	4-5	5	5	4-5	5	5	4-5	5	5
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	4-5	5	5	4-5	4-5	5	4-5	5	5	5	5	5
FeSO_{4}	4	5	5	4-5	5	5	4-5	4-5	4-5	4-5	4-5	5
CuSO_{4}	4-5	5	5	4-5	4-5	5	4-5	4-5	4-5	4-5	4-5	5

Table 5. Rubbing, Iron, Lighting fastness of silk and cotton fabrics dyed with Saururus chinensis extracted by water

Mor dants	Rubbing				Iron				Lighting	
	SILK		COTTON		SILK		COTTON		SILK	COTTON
	Dry	Wet	Dry	Wet	Fade	Stain	Fade	Stain		
None	4	4-5	4-5	4	4	4-5	4-5	4-5	1	1
$\overline{\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}}$	4	4-5	5	4-5	4-5	5	5	5	3	1
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	4-5	5	5	4-5	4-5	5	5	5	1	1
FeSO_{4}	4	5	5	4-5	4-5	5	5	5	1	1
CuSO_{4}	4	5	5	4	4-5	5	5	5	1	1

Fig. 5. Antimicrobial activity of extracted from Saururus chinensis.

Fig. 6. Antimicrobial activity of silk and cotton fabrics dyed with Saururus chinensis extracted by water.

4. 결 튼

천연염재인 삼백초를 증류수를 이용하여 색소를 추출, 농축 액을 제조하여 견 및 면직물을 염색한 후, 매염방법 및 매염제 의 종류에 따른 K / S 값, 색차, 염색견뢰도 및 항균성을 고찰한 결과, 다음과 같은 결론을 얻었다.

1. K / S 측정결과 매염한 경우가 무매염보다 K / S 값이 증가하

였고, 면보다 견직물이 K/S잢이 커서 염착이 잘되는 것으로 나 타넜으며 매염제 중에서는 Fe, Cu 매염제, 매염법은 동시매염법 이 K/S값이 크게 나타났다.
2. 색차 측정 결과, 대염에 의하여 견, 면직물의 명도는 전체 적으로 거의 dark하게 나타났고 매염방법 중에서는 동시매염법, 매염제 중에서는 Cr 매염제가 가장 선명하게 나타넜고 Fe 매염 시, 색차가 가장 크게 나타났다.
3. 염색견뢰도는 견, 면직물 염색시 매염제를 처리한 경우, 무매염보다 대부분 향상되었다.
4. 항균성은 매염한 경우, 무매염보다 항균성이 약 20% 이상 향상되는 것으로 나타났고 매염제 중에서의 Cu 매염제가 가장 항균효과가 크게 나타났다.

참고문헌

곽재욱 (1988) 삼백초의 약물학적 연구. 경희대학교, 박사학위논문.
김광수 (1995) 천연 식물성 염료의 염색성에 관한 연구. 건국기술논 문집, 제20집, 265-274.
김병희 - 송화순 (2000) 삼백초의 염색성 및 항균성(I). 대한가정 학화지, 38(3), 1-9.
서명희 • 신윤숙 (2000) 면섬유에 대한 홍차색소의 염색성. 한국의류 학회지, 24(1), 34-42.
육창수 (1989) 원색한국약용실물도감. 아카데미서적.
이전숙 - 이득영(1999) 지의류에 의한 견섬유 염색. 한국염색가공학 희지, 11(6), 43-50
이현숙 - 장지혜 - 김인희 - 남성우(1998), 정향추출물에 의한 면섬유 염색. 한국염색가공화획지, 10(3), 161-167.
조숭식 • 김병회(1996) 황백에 의한 견직물 염색. 한국엄색가공학회지, 8(1), 26-33.
주영주 (1998) 오배자의 열색성에 관한 연구. 한국의류학회지, 22(8), 971-977.
쳐석철•김미숙 (1998) 오리나무 열매 추출액에 의한 견 및 면의 염 색성. 한국섬유공학혀지, 35(3), 161-173.
최석철 - 정진순(1999) 봉선화 추출물의 항균성에 관한 연구(III). 한국섬유공학혀지, 36(4), 338-342.
하경남 (1987) 치자염에 관한 고찰. 원광대학교대학원 석사학위논문.
(2000년 3월 29일 접수)

[^0]: Corresponding author; Wha Soon Song
 Tel. +82-2-710-9462, Fax. +82-2-710-9469
 E-mail: doccubi@sookmyung.ac.kr

