A Formal Specification of Fuzzy Object Inference Model

퍼지 객체 추론 모델의 정형화

  • 발행 : 2000.06.30

초록

There are three significant drawbacks in extant fuzzy rule-based expert system languages. First, they lack the functionality of composite object inference. Second, they do not support fuzzy reasoning semantically easy to understand and conceptually simple to use. Third, knowledge representation and reasoning style of their model have a great semantic gap with those of current database models. Therefore, it is very difficult for the two models to be seamlessly integrated with each other. This paper provides the formal specification of a fuzzy object inference model to solve the three drawbacks. GIS(Geographic Information System) application domain is used to demonstrate that our model naturally models complex GIS information in terms of composite objects and successfully performs fuzzy inference between them.

기존의 퍼지 규칙 기반 전문가 시스템 언어에는 크게 세 가지 단점들이 있다. 첫째, 복합 객체 추론 기능이 없으며, 둘째, 의미적으로 이해하기 쉽고 개념적으로 사용하기 용이한 퍼지 추론을 지원하지 못할 뿐 아니라, 세째, 지식 표현과 추론 방식이 기존의 데이터베이스 모텔과 구문이나 의미에서 현격 한 차이를 보이고 있기 때문에 서로 통합되기 어렵다. 본 논문에서는 이 세가지 단점들을 해결하기 위한 퍼지 객체 추론 모델의 정형화를 보이고, GIS 응용을 예로 들어 제시하는 모델이 데이타베이스내 GIS 복합 객체들을 자연스럽게 모델링하고, 이들 사이의 퍼지 추론을 성공적으로 수행함을 보인다.

키워드

참고문헌

  1. Adlassnig, K. P. Fuzzy set theory in medical diagnosis. IEEE Transactions on Systems Man. and Cybernetics, SMC-16, 1986, 260-265
  2. Zemankova, M. FILIP: A Fuzzy Intelligent Information System with Learning Capabilities. Information System, 14(6), 1989, 473-486 https://doi.org/10.1016/0306-4379(89)90015-X
  3. Binaghi. E. A fuzzy logic inference model for a rule-based system in medical diagnosis. Expert Systems, 7(3), 1990, 134-141 https://doi.org/10.1111/j.1468-0394.1990.tb00220.x
  4. Orchard, R. A. FuzzyCLIPS, a users guide. Version 6.02, Knowledge Systems Laboratory: Institute for Information Technology, National Research Council, Canada, September, 1994
  5. Sheng, O. R. L. and Wei, C. P. Object-oriented modeling and design of coupled knowledgebase/database systems. In: N. J. Cercone, eds. Proceedings of the International Conference on Data Engineering, IEEE, Tempe, Arizona, USA, 1992, 98-105
  6. Shyy, Y. M. and Su, S. Y. W. K: A high-level knowledge base programming language for advanced database applications. In: James Clifford, Roger King, eds. ACM SIGMOD, 1991, Denver, Colorado, USA, May, 1991, 29-31
  7. Dechamboux, P. and Roncancio, C. Peplomd : an object-oriented database programming language extended with deductive capabilities, In: D. Karagiannis, eds. Proceeding of Database and Expert Systems Applications, Athens, Greece, 1994, 2-14
  8. Srivastava, D., Ramakrishnan, R., Seshadri, P. and Sudarshan, S. Coral ++ : adding object-orientation to a logic database language. In: R. Agrawals, eds. Proceedings of the 19th VLDB Conference, Dublin, Ireland, 1993, 158-170
  9. Diaz, O., Paton, N., and Gray, P. Rule Management in Object-Oriented Databases: A Uniform Approach. In G. M. Lohman, eds. Proceedings of the 17th International Conference on Very Large Data Bases, Barcelona, Sept. 1991, 317-326
  10. Alashqur, A. M., Su, S. Y. W. and LAM, H. A rule-based language for deductive object-oriented databases. In: J. Urban, eds. Proceedings International Conference on Data Engineering, Los Angeles, California, USA, 1990, 58-67 https://doi.org/10.1109/ICDE.1990.113454
  11. Su, S. Y. W. and Lam, H. X. An object-oriented knowledge base management for supporting advanced applications. In: Proceeding of 4th International HK Computer Society Database Workshop, 1992
  12. Yang, H. J., Yang, J. D. and Kim, Y. H., ICOT: An Integrated C-Object Tool for Knowledge-Based Programming, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 6(3), 1998, 273-293 https://doi.org/10.1142/S0218488598000240
  13. Martin, T. P., Baldwin, J. F. and Pilsworth, B. W. The implementation of Fprolog -a fuzzy prolog interpreter. Fuzzy Sets and Systems, 23(1), 1987, 119-129 https://doi.org/10.1016/0165-0114(87)90104-7
  14. 양재동, 정선호, Chakravarthy, S., 능동 데이터베이스상에서 되부름 기반으로 복합 사건을 탐지하기 위한 기본 구조, 정보과학회 논문지, 25(10), 1998, 1466-1477
  15. Raju, K. V. S. V. N. and Majumdar, A. K. Fuzzy functional dependencies and lossless join decomposition of fuzzy relational database systems. ACM TODS, 13(2), June 1988, 129-166 https://doi.org/10.1145/42338.42344
  16. Fukami, S., Mizumoto, M., and Tanaka, K. Some Considerations on Fuzzy Conditional Inferences, Fuzzy sets and Systems, 4, 1980, 243-273 https://doi.org/10.1016/0165-0114(80)90014-7
  17. Zadeh, L. A. A Theory of approximate reasoning. In: J. hayes, et al., eds. machine intelligence 9, ellis horwood ltd., sussex, uk, 1979, 149-194
  18. Yang, J. D. and Lee, D., Incorporating Concept-based Match into Fuzzy Production Rules. Information Sciences, 104(3/4), 1997 https://doi.org/10.1016/S0020-0255(97)00063-7
  19. Zadeh, L. A. The role of fuzzy logic in the management of uncertainty In expert systems. Fuzzy Sets and Systems, 11(3), 1983, 199-227 https://doi.org/10.1016/S0165-0114(83)80081-5
  20. COX, Earl, The Fuzzy Systems Handbook: a Practitioner's Guide to Building, Using and Maintaining Fuzzy Systems, Academic press, 1994
  21. Buckley, J.J. Siler, W and Tucker, D. FLOPS, A fuzzy expert system:application and perspectives, In Fuzzy Logics in Knowledge Engineering, C.V. Negoita and H. Prade, Eds., Verlag TUV Rheinland, Germany, 1986
  22. Leung, K.S. and Lan, W, Fuzzy concepts in expert system, IEEE computer, Sept., 1988, 43-56
  23. Forgy, C.L., OPS5 user's manual. Technical Report CMU-CS-81-135, Carnegie-Mellon University, Pittsburg, PA 15213, 1981
  24. IBM, Enhanced Common Lisp Production System User's Guide and Reference, First Edition, International Business Machine corporation, 1988