Numerical Studies of Transient Opposed-Flow Flames using Adaptive Time Integration

  • Published : 2000.01.01

Abstract

Numerical simulations of unsteady opposed-flow flames are performed using an adaptive time integration method designed for differential-algebraic systems. The compressibility effect is considered in deriving the system of equations, such that the numerical difficulties associated with a high-index system are alleviated. The numerical method is implemented for systems with detailed chemical mechanisms and transport properties by utilizing the Chemkin software. Two test simulations are performeds hydrogen/air diffusion flames with an oscillatory strain rate and transient ignition of methane against heated air. Both results show that the rapid transient behavior is successfully captured by the numerical method.

Keywords

References

  1. Ascher, U. M. and Petzold, L. R., 1998, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, SIAM, Philadelphia, PA
  2. Bilger, R. W., 1988, 'The Structure of Turbulent Nonpremixed Flames,' Twenty-Second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 475 -488
  3. Brenan, K. E., Campbell, S. L. and Petzold, L. R., 1996, Numerical Solution of Initial- Value Problems in Differential Algebraic Equations, 2nd ed., SIAM, Philadelphia, PA
  4. Frenklach, M., Wang, H., Goldenberg, M., Smith, G. P., Golden, D. M., Bowman, C. T., Hanson, R. K., Gardiner, W. C. and Lissianski, V., 1995, 'GRI-Mech - An Optimized Detailed Chemical Reaction Mechanism for Methane Combustion,' GRI Report No. GRI-95/0058
  5. Grear, J. F., 1992, 'The Twopnt Program for Boundary Value Problems,' Sandia Report SAND91-8230
  6. Im, H. G., Chen, J. H. and Chen, J.-Y., ]999, 'Chemical Response of Methane/Air Diffusion Flames to Unsteady Strain Rate,' Combustion and Flame, Vol. 118, pp. 204-212 https://doi.org/10.1016/S0010-2180(98)00153-9
  7. Kee, R. J., Dixen-Lewis, G., Warnatz, J., Coltrin, M. E. and Miller, J. A., 1986, 'A Fortran Computer Code Package for the Evaluation of Gas-Phase Multicomponent Transport Properties,' Sandia Report SAND86-8246
  8. Kee, R. J., Miller, J. A., Evans, G. H. and Dixon-Lewis, G., 1988, 'A Computational Model of the Structure and Extinction of Strained, Opposed Flow, Premixed Methane-Air Flames,' Twenty-Second Symposium (International) on Combustion, The Combustion Institute, pp. 1479-1494
  9. Kee, R. J., Rupley, F. M. and Miller, J. A., 1991, 'Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics,' Sandia Report SAND89-8009B
  10. Lee, S. R., Park, S. S. and Chung, S. H., 1995, 'Flame Structure and Thermal NOx Formation in Hydrogen Diffusion Flames with Reduced Mechanisms,' KSME Journal, Vol. 9, No.3, pp. 377-384
  11. Lutz, A. E., Kee, R. J., Grear, J. F. and Rupley, F. M., 1996, 'OPPDIF: A Fortran Program for Computing Opposed-flow Diffusion Flames,' Sandia Report SAND96-8243
  12. Petzold, L. R., 1982, 'A Description of DASSL : A Differential/Algebraic System Solver,' Sandia Report SAND82-8637
  13. Raja, L. L., Kee, R., J. and Petzold, L. R., 1998, 'Simulation of the Transient, Compressible, GasDynamic, Behavior of Catalytic-Combustion Ignition in Stagnation Flows,' Twenty-Seventh Symposium (International) on Combustion, The Combustion Institute, pp. 2249 - 2257
  14. Schlichting, H., 1979, Boundary Layer Theory, 7th ed., McGraw-Hill, p. 95
  15. Yetter, R. A., Dryer, F. L. and Rabitz, H., 1991, ' A Comprehensive Reaction Mechanism for Carbon Monoxide/Hydrogen/Oxygen Kinetics,' Combust. Sci. Tech., Vol. 79, pp. 97-128