초록
필기 한글 문자 인식을 위한 획 추출 방법으로 많이 사용되는 세선화는 패턴을 왜곡시키는 문제점을 안고 있다. 본 논문은 모양 분해 알고리즘을 사용한 한글 문자의 골격선 추출 방법을 제안한다. 먼저 모양 분해 알고리즘을 사용하여 입력 패턴을 유사 볼록한 부품 집합으로 분해한다. 모양 분해된 패턴에서 결합 부품을 탐지하고, 이 부품과 인접한 부품들로부터 골격선을 구한다. 그 다음 결합 부품과 인접하지 않은 부품들에 대한 골격선을 추출하고 골격선의 연결성을 보장하기 위해서 선분 연장을 수행한다. 본 논문에서 추출한 골격선과 세선화로 추출한 골격선을 비교하기 위하여 다섯 가지 비교 기준을 설정하고, 이를 기반으로 비교 분석하였다. 본 논문에서 제안한 방법이 여러 기준에서 세선화-기반 방법보다 우수함을 보였다.
The thinning process which is commonly used in extracting skeletons from handwritten Hangul characters has a problem of distorting the original pattern shapes. This paper proposes a method of skeleton extraction using a shape decomposition algorithm. We decompose the character pattern into a set of near convex parts using a shape decomposition algorithm. From the shape-decomposed pattern, we detect the joint parts and extract the skeletons from the parts incident to the joint parts. Then the skeletons not incident to the joint parts are extracted. Finally, the process of skeleton extension is performed to ensure the connectivity. We setup five criteria for the comparison of quality of skeletons extracted by our method and the thinning based method. The comparison shows the superiority of our method in terms of several criteria.