dlo]dE e} Rl g Al e

521

olo]AE Q] XAl djdt Ad 345
(Agent’s Learning Concept for Negation)

B &

At
&=

(Kang Soo Tae)

2 % JYolee) 747 RAYE 39 shit doHES} A YUS ol Rathe Aol

t}. Graphplan® E&%4E $8] mutexE 832 YA ol9t BAY A9 ou]E oA £
EZM FYel2y FEA EAE op7|gih o] A Uig AAE {8 IPPAAE not B3 2L ¥
FE& ol &R, RAYFY AME-S A FHF H|EE Fuleith Az7Fe FoR ol Al S R
7] 915t MDL 9o 93 vhipd & ALgitte M-S §3ld, $8E 43 AMdS 383) s8iA
538 XY FHYFE AMREe REY 243 atomE AMSEHE Aol AFoelAEY 75 {3
A v 284 7YelEle 7S AXNElT PP =W ¢ 7HEe AAste 483 ARE AAET
Q17ko] AMgEle A FARRE Mg S dolMET} AFHAR sigely] fEte JHolEoZRE v
AAER FAE A1ES AR AAE g A2 FalA vk literalE S F&50.

Abstract One of the hidden problems in a domain theory is that an agent does not understand
the meaning of its action. Graphplan uses mutex to improve efficiency, but it does not understand
negation and suffers from a redundancy problem. Introducing a negative function not in IPP partially
helps to solve this kind of problem. However, using a negative function comes with its own price in
terms of time and space. Observing that a human utilizes opposite concept to negate a fact based on
MDL principle, we hypothesize that using a positive atom rather than a negative function to represent
a negative fact is a more efficient technique for building an intelligent agent. We show empirical
results supporting our hypothesis in IPP domains. To autonomously learn the human-like concept, we
generate a cycle composed of opposite operators from a domain theory and extract opposite literals

through experimenting with the operators.

1. Introduction: Motivation of research

A domain theory constitutes a basic building block
for a planning agent. However, one of the hard
problems in a domain theory is that an agent does not
understand the meaning of its action. A planner like
Graphplan [1] uses mutual exclusion relations, called
mutex, to infer inconsistency between two operators
or predicates, but the planner does not understand
negation, which is closely related with mutex, and

just treats a negative term as a string of characters.

2 dre AFdgty sted 7y Aded g8 FYPSAE.
vt 8 4 AFdgw AFEITES wp
kstae@jeonju.ac kr
=EAHF 0 19999 7€ 20%

: 200008 349 259

If an operator requires P to be false, then Graphplan
defines a new proposition, say not-P or €, which
happens to be equivalent to (not P). This kind of
seemingly simplistic negative notation may cause a
redundancy problem such that a state change is
represented by two processes, such as add(not-in(x))
and del(in(x)), unless an agent is equipped with a
Unfortunately, most

special inference knowledge.

current systems do not possess this level of
knowledge vet.

Recent very efficient planning systems like IPP (21,
standing for Interference Progression Planner, or
Blackbox [3] introduce a negative term, like not or !,
to extend Graphplan to handle a negative function.

Thus, (not on-ground <y>) can be used instead of

522 (AZE 0]

(not-on-ground <y>) to negate a fact in a domain. A
negative term enables an agent to represent an
operator’s effect by a single process such as add(not
in(x)). Note that using not to negate a predicate is a
syntactic level of knowledge that simply adds a
negative symbol in front of a predicate. Thus, while
the agent can easily distinguish syntactic opposite
terms like on and not on, it cannot distinguish
semantic opposite terms like on and off

We believe that it is fundamentally important to
build an intelligent agent that is able to reason this
kind of opposite relation between two positive terms.
In this paper, we first point out that a human being
tends to represent a negative fact by a positive
predicate rather than using a negative function as in
IPP. For example, we use wet more frequently than
not dry to negate dry as a short cut We usually call
this type of positive representation as using an
and the
representation as well as Graphplan adopts this

opposite concept, original Strips
approach. Based on a human model, we will argue
that using Strips-like not-P notation can be a more
efficient and powerful technique for building an
intelligent agent than using the (not P) notation. We
demonstrate some empirical results in IPP domains
that support our hypothesis in terms of time and
space. Note, however, that the critical difference
between a human and a Strips-like planner is that
only the former possesses implicit knowledge that can
infer that P and not-P are opposite. For the purpose
of building an intelligent agent, we propose a method
to machine-learn this human-like opposite concept,
such as Opposite(wet)—dry, from a graphical domain

theory.

2. Issue of Representing Negative Fact

We first introduce two current approaches of
representing a negative fact as an operator’'s effect
and show the problems with each approach. Then, we
introduce human-like opposite concept as a solution
based on the principle of Minimum Description
Length [4].

2.1 Two negative representations

A Strips-like operator models an agent’s action in

m oo

2 $& A 27 ¥ Al 5 F (0005

terms of preconditions, pre(op), and effects which
are in turn composed of an add-list, add(op), and a
delete-list, del(op) [5]. To apply an operator, all of its
positive and negative preconditions must be satisfied
in the internal state of the agent. An operator's
negative effects can be represented either as a del (P)
or add (not P).

Two operators (actions) in Graphplan at the same
level are mutex if either 1) the effect of one action is
the negation of another action’s effect, 2) one action
deletes the precondition of another, or 3) the actions
have preconditions that are mutually exclusive.
However, Graphplan cannot infer not and just treats
not as a string of characters. If we have an operator
requiring P to be false, then we need to define a new
proposition not-P that happens to be equivalent to
(not P). For instance, if P is (on-ground <y>), then
we might have not-P be (not on-ground <y>), or
(not-on—ground <y>), or (up-in-the-air <y>) [1].

Suppose that an agent’s arm is empty in the actual
world. If the agent's sensors are noisy, the agent may
internally believe that its arm is empty and that it is
also holding an object at the same time: {arm-empty,
(holding x)}. A machine with incomplete domain
knowledge cannot detect that it is an impossible state.
Note, however, that if arm-empty is true in a state,
a normal human can infer that ~ (holding x) also
holds at the same time. Thus, he / she can easily
perceive that the above belief is inconsistent
containing opposite literals: {arm-empty, (holding x),
“(holding x)}. Even though the process of inferring a
negative predicate from a positive predicate seems
rather self-obvious to a human, it can be used as
crucial control knowledge in a machine. We will focus
on this matter in a later section.

If a predicate (on-ground <y>) should be deleted
when applying an operator, both Del(on-ground
<y>) and Add(not-on-ground <y>) should be
explicitly specified in the effect list since (on-ground
<y>) is not opposite to (not-on-ground <y>) to a
machine’s percept. To overcome redundancy, IPP or
Blackbox use the negative function not to negate P.
Since not-P is not used any more, a negative effect
can be uniformly handled as Add(not P) rather than

do]AES FHo| g Md g 523

as {Add(not-p), Del(P)}.

For example, suppose that the Take—out operator
in a Brief-case domain borrowed from IPP originally
has the preconditions, {in(x), is—at(loc)}, the add-list,
{not-in(x)}, and the delete-list, {in(x)}. Since the
effects of the operator are redundant and can be
inferred from the add-list, the operator can be
compactly represented as having the preconditions,
{in(x), is-at(loc)}, the add-list, {not in(x)}. Similarly,
the Put-in operator the preconditions,
{not-in(x), at(x, loc), is—at(loc)}, the add-list, {in(x)},
and the delete-list, (not-in(x)} can be compactly

having

represented without the delete-list.
2.2 Comparison of Two Representations and
Opposite Concept

Even though IPP can solve a redundancy problem
by using not, the advantage of using the negative
term comes with its price in terms of the memory
space and the time of processing a negation.

Note that while not-P is a positive atom, (not P)
is a composite term. As a matter of fact, it is
inconvenient to represent a concept using two words
instead of a word, and it is more difficult to handle a
negative term than a positive term. We can
reasonably hypothesize that it might be more efficient
to represent a concept using a positive term rather
than using negative complex terms to build an
intelligent Al agent.

An aspect of human ingenuity is the ability of
avoiding the complexity and the inefficiency by
inventing an atomic positive notation to represent a
negative concept, and a humans reasoning seems to
work according to the principle of Minimum
Description Length [4]. We will first conjecture how
a human can learn a concept (and its opposite
concept) and coin a new positive term to represent a
negative concept. A child may learn a concept by
dividing a set of objects composed of different
properties into subsets of congruent objects consisted
of homogeneous property [6]. Suppose a child touches
water and learns the concept of wet (and not wet).
Suppose further that dry is not yet known to the
child.

phenomenon each time using (not wet). Similarly, a

It may be inconvenient to represent a

system using only not without new coined terms is
limited in its expressive power. We conjecture that a
more expressive system should represent the negation
of arm-empty as holding(x) rather than as (not
arm-empty) in preconditions or effects for operators.
It should be pointed out that our approach of using a
positive term to represent (not P) is limited to a
two-valued system, and it is not applicable to a
multi-valued system. For example, given a set of
attributes, {white, red, blue, black}, of a color type in
a domain, (not white) should mean a disjunctive term
(white V' red V blue V black) rather than black.

Note that while not is syntactical reasoning, the
opposite reasoning is a semantic process. Since a
recent system like IPP still cannot understand that P
and not-P, or on and off, are opposite to each other,
an agent equipped with this capability is desirable to
be scaled up to a complex dynamic domain. In
analogy, similar to the development that not is
implanted into IPP to expand Graphplan, the opposite
function can be implanted into a system to infer a
negation, and how to handle opposite function inside
an agent should be hidden from a domain theory.

2.3 Empirical Results

To test our hypotheses, we ran a set of planning
problems in some IPP domains using the two types of
operators, which employ a positive and a negative
representation respectively. For example, the Put-in
operator in the Briefcaseworld domain with a positive
representation has the preconditions {not-in(x), at(x,
loc)}, an add-list {in(x)}, and a del-list {not-in(x)},
while the operator in the Negated Briefcaseworld
domain with a negative representation has
preconditions {not in(x), at(x, loc)} and an add-list
{in(x)}. We used the same set of operators to solve
the five problems shown below both in Brie-
fcaseworld Domain and in Negated Briefcaseworld
Domain. Ex3afct problem is composed of some
objects, such as paycheck, dictionary, ticket, etc. In
the initial state, the robot (agent) is at home, a
paycheck is located at the bank, the dictionary is at
the office, and the ticket is at the station. The agent's
goal is to move around to bring the objects to home

with a briefcase. The other problems are variations of

524 BRAFI=EA

the first problem with different and somewhat more
complicated initial states and / or goals. Even though
IPP produces the exactly same plans for the problems
in both domains after trying the same number of
actions, the processed time and the required memory
size was more efficient in the first domain than in the
second domain. We measured in the two domains the

time spent in terms of seconds as shown in the table

below:
Name of Briefcaseworld Negated Briefcase
Problem Domain Domain
Ex3a.fct 0.25 0.37
Ex3b.fct 0.08 0.33
Exd4afct 1.86 2.29
Ex5max.fct 3.29 5.28
Ex5d.fct 52.89 68.21

The second table below demonstrates the memory

spaces in terms of KBytes used to solve the same

problems:
Name of Briefcaseworld Negated Briefcase
Problem Domain Domain
Ex3a.fct 2205.0 3476.7
Ex3b.fct 4574 808.6
Exdafct 4864.7 7286.2
Ex5max.fct 10848.0 15950.9
Exbd.fct 10848.0 15950.9

The empirical results shows that using a positive
representation of a negative fact is more efficient than
using a negative representation both in terms of time

and space.

3. Learning Opposite Concept

In the previous section, we observed that a human
possesses knowledge unknown to a machine and can
immediately detect an inconsistent state. To
machine-learn this type of knowledge, we suggest a
method to generate opposite operators from a graph
in a domain theory and extract opposite propositions

through experimenting the operators. We show that

AZEHO 2 &8 A 27 A A 5 &(20005)

two opposite operators are closely related to mutex in
Graphplan. While mutex is inferred syntactically from
domain definition, opposite concept is learned from
experimentation.

3.1 Machine and Implicit Human Knowledge

The problem of using a negative predicate raises a
question of why explicitly encoding control
knowledge is necessary to a machine while it is
unnecessary to a human. Suppose a state description
S1 includes two predicates p and ¢. If a rule R p —
g is known for a system A, another state description
Sz is obtained by removing g from Si. S; and Sz are
equivalent with respect to the rule. On the other hand,
suppose the rule is not known to another system B.
Since B cannot infer g from p, Sz is not equivalent to
S: and not encoding g in Sz may cause a problem. For
instance, suppose a simple rule (dr-open dr) — ~
(dr-closed dr) is known to a human. Then, S; =
{(dr-open dr), ~(dr-closed dr), (next-to robot dr)}
and Sz = {(dr-open dr), (next-to robot dr)} are
equivalent, and ~(dr-closed dr) in S; is redundant.
On the other hand, if the rule is not known to a
planning system, the negative literal is not known to
the system in Sz

Knowledge acquisition is mapping of expert
knowledge to a machine. However, after mapping, the
expert may possess some knowledge not captured in
a planning system [7]. If an expert wrongly assumes
that a planning system knows the rule and S; and Sz
are equivalent states to the system, the domain theory
that he/she builds may cause an inconsistency
problem as shown previously. A type of incom-
pleteness in a domain theory may occur due to certain
types of expert knowledge which a machine does not
possess after knowledge mapping, but which the
expert assumes that the machine possesses. This type
of expert knowledge is called implicit knowledge.
Since we are not yet at the level of scientifically
understanding how the human mind works, especially
at the level of unconsciousness, it is difficult to
analyze the complicated structure of an expert's
implicit knowledge and make it explicit for a machine.
But, as a first step, we will focus on a somewhat
simple problem of understanding an opposite concept.

qolHE FAd h A & 525

Note that an opposite concept can be used to infer a
negative fact from a positive fact. For example, if a
door is open, it can be inferred that the door is not
closed. An expert can initially encode an opposite
concept into the domain theory as an inference rule or
as an axiom [8]. However, it is overwhelming to
manually encode all the related opposite concepts in a
complex domain. Thus, an adaptive intelligent agent
should be able to learn an opposite concept auto-
nomously in a new situation.

Suppose that a domain expert does not encode
opposite concepts into the domain theory as shown in
PRODIGY [9]. Then, while the expert unconsciously
uses an opposite concept, a system cannot infer a
negative literal. For example, if a door is open, the
expert understands that the door is not closed, and if
a state includes both door-open and door-closed, he
knows that the state is inconsistent. But any current
symbolic planning system, which does not understand
opposite concepts, cannot detect an inconsistent state.
While PRODIGY's simple theory operates in a
noiseless domain, this causes a problem in a complex
domain. Building a system with an erroneous
assumption that the system understands human
concepts can cause unexpected serious problems.

3.2 Finding Opposite Operators

An operator corresponds to an action routine of a
robot [5]. Since each routine can be processed
independently from other routines, each operator is
also an independent module in the domain theory.
However, even though the operators are unrelated to
each other on the surface, they can be closely related
in a deep structure of human percept. For example,
the open—dr and close—dr operators are conceptually
seen as opposite. We suggest a technique to find
opposite relations existing between special type of
' operators and to simplify them syntactically by
removing redundant negative preconditions.

The set of operators in a domain theory can be
divided into two congruent groups based on an
operator’'s effects on its target object: temporary and
destructive operator groups. When an operator is
applied to a target object, the state S of the object
may change. If the operator’s effect on the object is

not permanent, then the operator is classified as
temporary. Applying a series of other operators can
restore S. Thus, the same operator can be applied to
the same object again. On the other hand, if an
operator’'s effect on the target object is permanent
and the original state cannot be restored, the operator
is classified as destructive. Note that if a temporary
operator is to be repeatedly applied to the same
object, some other temporary operators must restore
the operator’s preconditions satisfied at the original
state. In fact, the other operators undo the effect of
the operator on the object. If they do not exist in the
domain, the effects of the operator on the target
object may remain permanent and this domain is
useless.

For example, let a domain theory be composed of
two temporary operators, open—dr and close-dr and a
destructive operator, drill. When open-dr is applied to
open a closed door, the original state of the door can
be restored by applying close-dr. Thus, open-dr can
be applied again to the door. Note that close-dr
restores the preconditions of open—dr by undoing the
On the other hand, for a
destructive operator, drill, the change to the state on

effects of open-dr.
the target object is designed to be permanent, and
other operators must not undo the effects.

To investigate some interesting relationship
between two temporary operators, P and €, such that
P undoes the effects of @ on a target object as well
as it restores the preconditions of @, we generate a
dependency graph between the effects of an operator
and the preconditions of another operator. For an
operator, op, let prestate(op) be a state which
satisfies pre(op), the preconditions of op, and let
poststate(op) be the state occurring after applying op
at prestate(op). poststate(op) is calculated by the
operation: prestate(op) + add(op) - del(op). The
is structurally represented as a
, 0Pm}

.., e). An edge e; € E connects one

domain theory
directed graph, D = (V, E), where V = {opj, ...
and E={e,
operator op; to another operator op; if poststate(opi)
satisfies pre(op;). ey indicates that op; can be always
applied immediately after opi was applied.

Let's consider a set of operators: open-dr,

526 AR = 7R AT EY]
close-dr, lock-dr, and unlock-dr. There is an arc
from open-dr to close-dr because applying close—dr
always satisfies the precondition of open-dr, and we
can always open the door immediately after close-dr
is applied. Since there is an arc from -open-dr to
close-dr as well, there is a cycle composed of
close-dr and open-dr. Similarly, there is a cycle
composed of lock-dr and unlock-dr. However, there
is no arc from close-dr to lock~dr because if a robot
does not hold a key yet, it needs to subgoal to
pick-up a key before it locks the door.

For an n-cycle, a cycle composed of n operators, an
arc e; (i+1) mod n, for i = 1, ..., n, connects op; to op ¢+
mod n. The arc represents that poststate(op;) satisfies
the preconditions of op i+ mea n. Thus, poststate(op:)
obviously becomes prestate(op 1) mod n).

Theorem: A temporary operator belongs to an
n-cycle.

Proof) Let op be a temporary operator. Given
prestate(op), poststate(op) is obtained by applying op
to prestate(op). If pre(op) still holds after applying
op, then pre(op) C poststate(op). Thus, poststate(op)
becomes prestate(op) and there is an arc from op to
itself ‘as a vacuous self-loop. On the other hand, if
pre(op) does not hold after applying op, then pre(op)
& poststate(op). Let P = {p;, .., p) be the literals
that existed in prestate(op) but which disappear in
poststate(op) after applying op. To apply op, a
temporary operator, again to the object, prestate(op)
must be restored. Hence, there exists a sequence of
operators opj;, .., opn that establishes P, where op;
immediately follows op. Thus, there is a path from op
to ops. Since op can be applied immediately after the
sequence of operators are applied, poststate(opn) must
satisfy prestate(op), and there is an arc from opn to

op.]

As a special case of an n-cycle, a 2-cycle,
composed of two operators, forms a bipartite complete
graph. For any two. operators forming a cycle, let
Dual for an operator be the function that returns the
other operator in the pair. If op; and op; form a cycle,
Dual(op;) is op; and Dual(op;) is op:;. Dual(op)

2 &8 A 27 A A5 (0005

establishes the preconditions that op has deleted.
Restoring the preconditions is done by undoing the
effects of op, that is, by deleting what were added by
add(op) and adding again what were deleted by

del(op). Recursively, Dual(Dual(op)), which is
actually op, restores the preconditions of Dual(op) by
undoing the effects of Duallop). Note that

prestate(op) is the same as poststate(Dual(op)), and
prestate(Dual(op)) is the same as poststate(op). We
can easily show that the add list of one operator is
the same as the delete list of its dual operator. From
the formula, poststate(op) = prestate(op) + add(op) -
del(op), we deduce prestate(op) = poststate(op) -
add(op) + del(op), which is the
prestate(Dual(op)) - add(op) + del(op). Note that -
add(op)’ functions as the delete list of Dual(op) while
+ del(op)’ functions as the add list of Dual(op).
Thus, we showed that add(op) = del(Dual(op)) and
del(op) = add(Dual(op)).

What does it mean that Dual(op) adds what op
deleted and deletes what op added? Since the adding
and deleting of a literal to a state is the opposite

same as

operation, op and Dual(op) constitute the opposite
function. Two operators are defined as opposite
operators Iff the add list of one operator is the same
as the delete list of the other operator and the delete
list of one operator is the same as the add list of the
other operator. The opposite operators undo the
effects of each other. For example, add(Open-dr) is
{door-open} and del(Open-dr) is {door-closed},
while add(Close-dr) is {door-closed} and del(Close-
dr) is {door-open}. Thus, Open-dr and Close~dr
constitute the opposite operators.

Note that two opposite operators are closely related
to a binary mutual exclusion relation. Two actions in
Graphplan at the same level are mutex if either 1) the
effect of one action is the negation of another actions
effect or 2) one action deletes the precondition of
another, or 3) the actions have preconditions that are
mutually exclusive. We conjecture that if any two
operators satisfy 1) and 3) conditions of the above
three conditions, they form opposite operators.

We should point out that there also exist

higher-cycles in a complex domain. For example,

dle]RES] FAH tig A Sy 527

consider a variation of the blocksworld domain where
the blocks have non-uniform sizes, with super-blocks
that can hold two blocks on top of them. Six
operators, say, Stack-SuperBl, Stack-LeftBl, Stack-
RightBl, Unstack-SuperBl, Unstack-LeftBl, and,
Unstack-RightBl, constitute a 6-cycle. The concept of
opposite operators does not apply to a higher cycle.
However, as Kambhampati et al. [10] state, 2-sized
which
dominant in percentage of action interactions in most

mutexes, include opposite concepts, are
classical planning domains with very practical and

amazingly successful results, while higher-order
interactions between actions as in the super-blocks
domain are relatively rare.

3.3 Extracting Opposite Literals

We will show how to extract mutually inconsistent
from using an

literals opposite

experimentation method and use them as a rule to

operators

learn opposite concept.

Let op; and op; be opposite operators. add(op;) is
opposite to add(op;), and add(op;) = {(pi, .., pn}
contains a literal which is opposite to another literal
in add(op;) = {qi, ..,qn}. If a literal p; C add(op:) is
the opposite concept to a literal gx C add(op;), a state
{p;, ~aqi/ is feasible, but {p;, g/ is inconsistent and it
is not feasible as a state. To find the opposite literals
through experimentation, an initial state S is set as
{pi} in {pi, .., pa} one at a time, for each i = 1, .., n,
and then we insert into S each literal g« from {q;,
..,Gm/ one at a time, for k = I, ..., m. When attempting
to insert gk to S, if {p;, g/ is not possible and causes
the state to change p; to ~p;, resulting an unexpected
state {qx, ~pi}, then gx and p; are the opposite literals,
and ~p; can be inferred from g, thus creating a rule
gr — ~pi. This method is expressed in an algorithm
form as follows:

Procedure Extract_Opposite_Literals
Let (opi, op;) be opposite operators
Let add(op:;) < {p1, ..., .} and add(op) < {qi,
s Gt
for each p; in {(pi, .., pa} for i=L.n
Let S be set to {pi}
for each gx in {qs, ..., g} for k=1.m

Let S" < S + g«
Let same < Observe_State_Check_Literal
(S, pi)
If same = false then (p; g« is opposite
Function Observe_State_Check_Literal (S’, p:)
return true if p; is in S’

else return false

For example, suppose lock-dr and uniock-dr are
opposite operators. Let add(lock-dr) be {locked}, and
add(unlock-dr) be {unlocked}. If S = {locked} is an
initial state, adding unlocked to S, {locked, unlocked}
is not possible and the state changes to a new state
{unlocked,
locked is learned by experiments. To show a more

~locked}, thus a rule unlocked — ~

complicated example containing variables, suppose
stack(x, y) and unstack(x, y) are opposite operators.
Let x be instantiated to box; and y instantiated to
boxe. Let add(stack(box;, boxz)) be {arm-empty,
clear(boxi), on(boxi, boxz)}, and add(unstack(boxi,
boxz)) be {clear(boxz), holding(boxi)}. Given that S =
{arm-empty} is an initial state, adding clear(boxz) to
S, a new state S’ = {clear(boxs), arm-empty} is
possible and the two literals are not opposite to each
other. On the other hand, adding the next literal
holding(box;) to S, the expected state {holding(boxi),
arm-empty} is not possible and an unexpected state
S’ = ({holding(box),
where arm-~empty in S is negated. Thus, a rule

~arm-empty} is observed,

holding(box;) — ~arm-empty is learned by
experiments.

If applied as a preprocessor to an incomplete
domain theory, this approach of learning opposite
function can make an agent more intelligent because
a negative literal can be inferred from a positive
literal, and the learned rule simplifies a domain theory
making an initially incomplete theory more complete

and less noisy [11].

4. Conclusion

A planning domain theory represents an agent's
knowledge about the task domain. An agent’s
understanding and manipulating intelligent entities of

the domain is a hard but fundamentally important

528 AEARE =R LT

problem. From observing that a human introduces
and utilizes a new predicate, commonly called
opposite concept, to negate a given fact based on
MDL oprinciple [4], we propose utilizing a new
predicate rather than a negative function to represent
a negative fact as a technique for building a more
intelligent agent, and we show some empirical results
in IPP domains supporting our claim in terms of time
and space. The opposite operators and propositions in
a domain theory are a special type of mutual
exclusion first introduced in Graphplan’s algorithm.
However, the utility of using mutex and not is limited
to the syntactic aspect of mutual exclusion, and the
current efficient planning systems do not understand
semantic implication of mutual exclusion [1, 8, 10].
We conjecture that the capacity of understanding a
semantically-oriented opposite concept is funda-
mentally important for an agent to be scaled—up for a

real world problem.

References

[1]1 Brum, A. L. and Furst, M L., Fast Planning through

Planning Graph Analysis, in Artificial Intelligence

90(1-2): 281-300, 1997.

Koehler, J. Extending Planning Graphs to an ADL

Subset, Proc. 4th European Conference on Planning,

1997.

[3] Kautz, H. and Salman, B. Pushing the Envelope:
Planning, Propositional Logic, and Stochastic
Search, Proc. of 13th Nat. Conf. AI, 1996.

[2

—

[4] Rissanen,]. Stochastic Complexity in Statistical
Inquiry World Scientific Publishing Company, 1929.
[5] Fikes, R. and Nilsson, N. STRIPS: A New Approach

to the Application of Theorem Proving to Problem
Solving, in Artificial Intelligence 2, 1971.

[6] Tae, K. S., and Cook, D. Experimental Knowledge
Acquisition for Planning, in Proceedings of the 13th
International Conference on Machine Learning,
1996.

[7] DesJardins, M. Knowledge Development Methods
for Planning Systems, in AAAI-94 Fall Symposium
Series: Planning and Learning: On to Real
Applications, 1994.

[8] Knoblock, C. Automatically Generating Abstractions

for Planning, in Artificial Intelligence, 63, 1994.

Carbonell, J. G., Blythe, J., Etzioni, O, Gil, Y.,

Knoblock, C., Minton, S., Perez, A., and Wang, X.

PRODIGY 4.0: The Manual and Tutorial. Technical

Lo

—

Edo] € 38 A 27 A A 5 50005

Report CMU-CS-92-150, Camegie
University, Pittsburgh, PA, 1992.

[10] Kambhampati, R. and Lambrecht, E, Parker, E.
Understanding and extending Graphplan, Proc. 4th
European Conference on Planning, 1997.

[11] Tae, K. S, Cook, D. and Holder, L. B.
Experimentation-Driven Knowledge Acquisition for
Planning, to appear in Computational Intelligence
15(3), 1999.

[12] Fox, M and Long, D. The Automatic Inference of
State Invariants in TIM, 1998.

[13] Gil, Y. Acquiring Domain Knowledge for Planning
by Experimentation. Ph.D. Dissertation.,, Carnegie
Mellon Univ. 1992,

[14] Wang, X. 1995 Learning by Observation and

Practice: An Incremental Approach for Planning

Operator Acquisition, in Proceedings of the 12th

International Conference on Machine Learning,

1995.

Weld, D. Recent Advances in Al Planning, Al

Magazine, 1999.

[16] Smith, D. and Weld, D. Conformant Graphplan, in
Proceedings of 15th Nat. Conf. AI, 1998.

Mellon

(15

=

2 A

1983 MEoiglw JJFES] =9
19913 Univ. of North Texas
(Computer Science M.S.). 1991'@ ==
Texas IBMAF &5, 19973 Univ. of
Texas at Arlington (Computer Eng.
Ph.D). 1997'd AYist AAA LGS A

AL 1998 ~ HA FFistw AFEFHY 2w

gk dEAS,

internet

machine learning, planning,

