HEUE JAEZS FZErtolAlold 7} 499

AXUE HJaEZES ALHulolAol A 7|4
(A Component Workflow Customization Technique)

5 + A t
dazn' 248

(Chul Jin Kim) (Soo Dong Kim)

2 % AZEJOE Mdsted v TEHE BES AMEE ATENY AR 6L AIHE BE
@ = Utk olgt o] vlE] 7Y EE2L AXWE(Component)TaL 818 AZXVEE 4% 99z A
Aol A Qe H o A7k]15}01 IH’T- Ag REE ¢7|22 43 w2 g oEgsAoxe AL
F QAo AdAe S8 YR @ w2 (Black Box) ¥eie] AXAEE ARggth 28y
AEREL AE =M 5—"3011 ‘;l?ﬂ &4 2 YIZ29(Workflow)e] ¥73& 9317 wjEe] #AxEn}
0] Z(Customize)@ 4 v Whgol glojof it} 7%4 AzEulolz 7I¥e AXVEY £4& WA
€ A 59 Hol itk B =&dAe HzYL WA &4 Brto] ol HIEVE ‘—H-r——] A=E
29T MAE + A 71HE AN 7)E Hi*i-re "R A FXVE YRS AdAL
olFzln R FFoA Aot s Blo]E vhA(White Box)o A%, & =Fo)Me %iii—?&—] A7
< Flo)E HiAU} ollg) B diA)2 AXWUE QEHo)A T8 o]fd FHAXEulolz & 4 9tk
£ =8 AAde HECVE A2Hulo)Z 7L 53 ¥zY2 SR04 =gl 45320 S48
7tAY AXAEF Ev] gEF22 AME F e %“J% AzHutelz= 71HE A4 gk

ﬂJ

-h

559
= rlr

Abstract When the developers develop the software, the cost and time of the software
development can be reduced by using blocks that are implemented previously. We call these
implemented blocks components. They provide only the interfaces of component to developers, while
the detailed internal information is being hidden. The components can be used to develop large
applications fast and easily. Developers use the black-boxed components that the internal details of
components is invisible. But, Developers want the properties and workflows of components to be
modified. To do this, the customization technique is needed. The existing customization techniques are
limited in the customization of component properties. In this paper, it proposes the technique that can
change the workflow of component as well as properties in the business point of view. In the existing
workflow customization technique which is called white box component, the internal details of
component should be understood by developers and should be modified in code level. In this paper, we
propose a customization technique which using the component interface in black box form only. This
customization technique can be used more generally in a business field.

1. Introduction document mixing, Mach’s operating system modules,

In the mid- to late-1980s, component-like systems Ada's class modules, and Applet's QuickTime were

began to appear , but they were not called com- all steps toward a component model[l]. Advancing

ponents, as such. Arguably Xerox’s Parc’s early these reusable components is the reason why the

object-oriented development hasn’t improved the cost

tol e A SAdeE ARG of development and the quality of the software

cjkim@selab.soongsil.ac kr product. That is to say, the object did not provide the

t FAHY: sAuga AFEET a5 basic reuse, but the components, such as the OLE of
sdkim@computing.soongsil.ac.kr . . .

=EH% . 10099 89 239 Microsoft, become important in software market

AAGE ¢ 20000 39 249 quickly for its reusability.

500 HRASGH=EA 2ZEY0 B o]& A 277 A A 5 (005

The components mean the industrialization of
software development and the possibility of mass
production. Although the components have generality,
they need mechanisms to adapt to the feature
domains when reuse is in the special domain. The
existing customization only changes the component’s
properties that are focused on the visual component
mostly.

To reuse the component in the business logic as
well as the graphic user interface, the change of
property and the component internal workflow is
become possible. The component internal workflow
should be changed using only interface. In this paper
we propose a customization technique to change the
properties and workflow of component using only
component interface without altering the component

interior.

2. Related Work

2.1 Component and Component Model
Until heard

components in fourth generation language such as

now, though we have about

Visual Basic and Delphi, these components have
many limitations to give definition to the black box
components. We give a definition of component using

several common definitions.

Modularity Interface
Dynamic Binding Composition
Architecture Customization

Fig. 1 The common feature of component

The common features of components can sum up
modularity, interface, dynamic binding, composition,
architecture, customization and so on, like Figure 1.

Having a strong modularity is equal to have a
strong generality, the general components mean that
software can be developed in plug and play like

hardware developed in various domain without

changing the properties of component much.
used by the
the dynamic binding calls

When the existing library is

application, is only
uni—direction, that is to say, from application to
library. However the calls in component is called
binding. The

components can be connected to the application in

bi—direction calls by dynamic
runtime using interface and can also be connected
with other component dynamicaily. The library must
be recompiled in order to reuse in the development
system, but the components can be used dynamically
without recompiling in runtime.

The components in the reusable unit of the
black-box need not to
mechanism, but it must know the interface of
in the

recognize the internal

component in order to use component
development system. The developers use the interface
in among components as well as in the development
systems. The interfaces are defined as the services of
component, that is, the interfaces are implemented
logically by the internal classes of component.

The components must be designed and
implemented to meet the previously defined
architecture so that it can interact with other
components or framework. The component-based
architecture is offered in the form of framework to
the functional
replacing components. The component architectures
like CORBA or DCOM is substituted for the

operations of components. The components should be

archive improvement adding or

designed to meet the component architecture and
should be substituted for the facilities ,such as
transaction, state management, security management,
and so on. The components have the architecture
isn’t able to operate on other component architecture.
The components depend on the features of
architecture, but the component model like CORBA
and DCOM has released the specifications for
interoperability among components[2].

The components can plug in and compose
component though interfaces. These compositions
need designing the action among components and the
components must be composed in runtime. At present

in software market there are Visual Java(SUN),

AEUE Y3 E2F 71&HrelAo)A 7Y 501

Visual Age(IBM), and so on, as tools for component
composition, but they don’t support creating, deleting,
and connecting dynamically and don’t check the
validation in semantic level[3].

When the developer develops the application using
the components, he can set the components in a
developing system to change the properties of
component. These customizations generally access
the component internal datum using interfaces([4].

The component model defines the - basic
architecture, the interfaces of component and the
mechanisms for the interoperation between
components and container. Like this, the component
model defines the environment for supporting
reusable component[5].

The components operate within a container that
support the application context for more than one
component. It also supports services to manage and
control the components. Commonly the client
components operate within the visual container and
the server components operate within non-visual
container that supports the services, such as
TP(Transaction Processing) monitor, Web server and
database system[6] [7].

The JavaBeans component model supports the
development of the reusable Java components and is
designed to run through the Java development tools.
The developers who use the Java development tools
can customize the JavaBeans using the property

tables or the customization methods.

2.2 The Trade-Off of the Component Custo-

mization

We can consider two things about components,
which is granularity and generality of the com-
ponents. If the size of the components increases in
volume, the applicable areas are narrowed. So the
generality goes down. Like this, the trade-off among
the components is in existence and the developers can
select to meet the scope of component by them.

A Figure 2-(A) is shown the relationships among
the generality, the granularity, and the customization
of components. The larger the size of component is,
the more the alteration it has. So if the number of the

customization is much more, the generality of the

component will be decreased. In the industrial world
the developers want larger components than smaller
ones. However the large components decrease the
generality. To increase the generality must support
the customization technique that can be used the

components generally by the application developers.

Granularity Co\rlrin;igrll%m Alteration
Invisible
Component
Ci izatic 7| C
w
[4 -
Generality Generality ¢ &ap G i

(a) (b) (©)
Fig. 2 The Trade-off of the Customization

The generality of the visible components is
stronger than the invisible components. The invisible
components are mostly the related with the business
logic that has many change points. So it’s generality
is weak. As Figure 2-(B), the invisible components
are much more customized than the visible com-
ponents. The visible components customize the states
of component mostly, but the invisible components
customize the internal facility of component

As Figure 2-(C), the customization has the con-
stant proportion relationships with the alteration of
components. If the customizable functionality is much
more, the generality will be weak. On the contrary, if
the customizable functionality is a few, the alteration
will be weak and the generality will be raised.

2.3 The Property Customization

The developers can plug-in the components
properly in the developing system to change the
properties of component when the application is
developed using the components. These custo-
mizations generally use the interfaces to access the
internal datum of the component. The properties of
component changes in the design time or the run time
and the changeable properties are defined by the
getter or setter methods[2]. The developers who
develop builder tools can provide the customization
properties to the users so that they can get to know
the interfaces of component easily by the design

502 ARSI =FX AZEO L o] A 27 A A 5 3005

pattern of the getter or setter method.

public <STATETYPE> get<STATENAME>();

public void set<STATENAME>(<STATETYPE>
data);

Like the code above change the type of property
into return type for the getter method of property and
append a property name followed by get to make a
don’t need the
parameters and the setter methods get the property

property. The getter methods
values. The setter methods establish the property
values of component via only parameters without
return values. The parameter type is the property
type and the name of method is consisted of set
followed by property name.

public class Button {
private String UlClassID = "ButtonUI";
private Color color = Color.gray;

public String getUIClassID()
{ return "ButtonUI”;)

public void setUIClassID(String UlIClassID)
{ this.UIClassID = UlClassID; }

public Color getColor()
{ return color; }

public void setColor(Color color)
{ this.color = color; }

)

Button Component

Color getColor()

void setColor(Color)

|T

Property Customizer

Fig. 3 Button Component

The above code defines getter/setter method that is
used to customize the properties in the Button
component. The color of Button has the default value
that is Color.gray. If the color of Button should
change into the blue, we can customize the property
using the getter method.

The Figure 3 shows the relationship between the
getter and the setter method of the Button component.
The setter method is the interface of property input
and the getter method is the interface of property
output. Like this, the getter/setter pattern defines the
property methods and it can be customized to make
the properties easily to the application developers or

to the builder tools using the components.

3. The Component Model

To apply the component customization technique
which have been proposed in this paper the
component model as the Figure 4. This component
model is based on the component model of JavaBeans
and consists of several component classes in the
interior. Each class is developed by the component
developers and is packaged via the manifest file
which

component’s internal classes we use the interface of

is specified the classes. To access the
the component and consists of the property interfaces
and the interfaces to customize the internal work

flows of the component.

‘ Application l

Component

Component Classes Interface Class

Property Interface

Manifest File E

Packaging

Introspection

Fig. 4 The Component Model

When the component users develop the applications
by using the component, they use the interfaces of
component whose the representation can be indicated
as Figure 4.

The interface technique of IDL(Interface Definition
Language) form declare only the signature of method,

such as IDL, without implementing the methods of

AXJE YA TS ALEntoAolAd W 503

Interface Class titerfuce Class
- Method!
Class A Method1 (), Class A Mﬂo(;
Method2(); M » '()
1| Metedz Pl Method
Method1(}{ ..} 100) ALY)
Method2(). } Methodn(); 201) Metads)
(8.50:)
Class B Class B
Methodn({ .} 80()

The interface of IDL form The interfaces of Method Call form

Fig. 5 The Component Interfacing Technique

the interface class which implement in the internal
classes of component[8]. The method call form is
technique that calls directly the methods of the
internal class of component in the interface class. At
this time the interface class is not the class that is
declared in the IDL form but the concrete class that
can be instantiated the objects. The component
interface technique using in this paper is the second
way and the concrete interface class is contained the
interior of component.

The interface that affected to the change of
workflow among the component classes adds two
arguments.

public function(varTypei-n variablei-n, String
ClassName, boolean flag);

Like above, the function appends the ClassName
and the flag in the arguments. The ClassName is the
class name that has the desired flow by developers.
The flag is argument to determine whether the
workflow is customized or the default workflow used.
The interfaces of component include the general
interface and the special interface that changes the
workflow of the internal classes of component.

The package technique uses the JAR(Java
Archive) file form of Java. The JAR file includes the
class files for Java applet and application and the
related file such as image file, audio file, text file, and
so on[]. The manifest file is used as packaging the
component classes in the JAR file. The manifest file
specifies the class name behind Name: like Figure 6.

The documentation uses the manifest file to
support APL The interface of the component uses the
manifest file to extract the classes of the component
in the runtime[9].

Manifest-Version: 1.0

Name: Client.class

Name: Server.class

Name: DBManager .class

Name: FileManager.class

Name: LoginComponentinterface .class

Fig. 6 The Manifest File

4. The Workflow Customization Technique

If the visual component has the property
customization facilities that change only the property
of component, the components can be reused in
application independently. However the non-visual
components are restricted to reuse with only the
property customization facilities in the business point
of view.

As the component includes many classes, it exists
the workflows among the classes. These workflows
mean that the component contains the flow of
function. If the component is provided the function to
customize the internal flow of component as well as
the component properties, it will be reused in the
various domain generally. The component is the
reusable unit of the black-boxed that can be reused
with only the interfaces of component without

recognizing the interior of component[10][11][12].

* The Component Class
Extraction

!
| The Component Class
.. Introspection .
M—

- Workflow Custornize

I

Fig. 7 The Workflow Customization Process

Like Figure 7, the workflow customization of
component can extract the packaged classes of
component using the Reflection in the runtime. The

504 AR 785 =8)

Reflection facility can get the introspection
information of the extracted class. The extracted
introspection information is class name, constructor,
attribute, function name, and so on. The component
interfaces among the extracted classes can change
the workflow of component.

4.1 The Component Classes Extraction

The component can consist into only a class. If the
component consist into several classes, it includes the
manifest file that represents the class information of
component. The manifest file can represent whether

what classes within the component exist.

Jar Package

Reflection

Component
Document

Use

| Application F ___________________
Reference

Fig. 8 The Class Extraction of Component

Like Figure 8 the packaged component include the
interface class that represents the class information
within the component and the application developer
uses the interface class. The component interface
refers to the manifest file to document the component
and support it to the application developers. After all,
the component interface recognizes the internal
classes of component to customize the component.
The workflows of component can implement the
default workflow within the interior of component
when the component is developed, but they can be
customized via the component interface when the
application is developed

4.2 The Extraction of Class Information -

To get the information of the extracted classes
from component in the runtime uses the Reflection
facility of Java. The Reflection facility appropriates in
the case of executing the internal class’s method of

component and supports the proper methods to

AZE0] 2 o]& A 27 A A 5 E(0005)

custornize the workflow of component.

Class file

public Class A {
(...}
(...}

Class Name : A
Attributes :
Methods : f1, f2

Reflection

}

Classinfo

public Class B {

Aa=newA()
(Class A, Class B) 3% ion| Class Name : B
af1(); Attributes : A

Methods : f3, f4

Fig. 9 The Extraction of the Class Information

The extracted information through the reflection
facility is the information that needs to customize the
existing workflow among the internal classes of
component. As Figure 9, The class A and B are the
internal class of the component that is extracted from
the component. They show their information in the
runtime using the reflection facility of the Java.

Class
State Method
Name
f1(-, Object, flag)
A £2(-, Object, flag)
Class
State Method
Name
3(:, Object, flag)
B A f4(, Object, flag)

Fig. 10 The Reflection Information of Class A and B

Like Figure 10, the methods of the internal class
have two arguments that appended when the
component created. The argument Object is object to
customize the workflow .among the classes of the
component and the argument flag is the flag to
determine whether the workflow is customized (True)
or the default workflow is used (False).

4.3 The Workflow Customization

The component user can customize the workflow
of the component only using the interface of

component. In this paper proposes three way to

FAXUE A2 E2S A2HuloAlo] A 71 505

customize the workflow.

The first is the customization technique that
chooses the desired workflow among the permissible
workflows through the interface of component. If the
component user want to customize the workflow of
component, he should specify the desired class name
to the argument of the component interface. The
component user can refer what the permissible class
exists through the component document.

public class ComponentClass {

public function (, , String className, boolean flag) {
if(! flag) { —

Defauit Workflow
else {
if(className instanceOf ComponentClass)‘glassName.function();
else if(cl me inst: Of ComponentClass.) cl function();
B A A 3

else if(clas;r-‘l'an'mle instanceOf ComponentClassn‘)\ className function();

4

Component Interface Interface(,.) l

public class Application { /1
public static void main(String[] args) {.~
Componentinterface.interface(-/;tlassName, true)
]

Fig. 11 The Selection of the Permissible Workflow

The Figure 11 shows the process that customizes
the workflow of component through the component
interface. If the application calls only the interface of
component, the component customizes the workflow
of classes automatically within the interior of
component. If the developer does not want to
customize the workflow of component, the flag is set
to the false to use the default workflow. In the Figure
11, if the application calls the interface method of the
Componentlnterface class, the interface of the
component invokes the class among the internal
classes. The method of the invoked class creates the
object of the class name that is inserted in the
argument. If the inserted class is the class of the
ComponentClassz, the object of class invokes the
function() method. The name of method conforms the
pattern that has the same method name among the
classes

As Figure 12, the permissible class that can be

insert into the component is the first class of

FileManager

Fig. 12 The Permissible Workflow Classes

workflows which is FileManager or DBManager. The
workflow of the DBManager is the flow that can
access to the database and the workflow of the
FileManager is the flow that can access to the file.
These flows are determined at the Interface class that
is the interface of the component. The interface has
the appended arguments as Figure 11.

The second way is technique that changes the
sequential flow of the permissible workflow. As
Figure 13, the internal workflow of the component can
be changed the flow of any workflow to the other
workflow through interface.

Modified Workflow

O object

. Interface Object

o Terminal Object

Fig. 13 The
Workflow

Customization of the Permissible

The workflow of Figure 13 consists of the 1, 2—1
and 2-2' These workflows are the permissible
workflows that are provided by the component. If the
component user wants to change on the way of the 2
to the workflow of the 1, it create the workflow to
2-c¢ dynamically. To connect the workflow between
the 1 and the 2, the objects should pass the object to
each other dynamically.

However these permissible workflow should open
the interior of the component. So this technique

506 AR =FA AT EY O] B o]g A 27 A A 5 T (20005

supports not in black box but in white box to the

developers.

StoreClass

public class DBManager §
public void changeNode(Object[] object)§
Object[] obj;
for(int i = 1; i < object.length() ; i++) {
obj[i-1] = object[i);

abstract class StoreClass { }

. searchData(id,pw);

abstract void changeNode(); object[0].changeNode(obj)

. }

} }

Fig. 14 Abstract class and subclass

The Figure 14 is the abstract class StoreClass and
the subclass DBManager. This code shows the way
that changes the permissible workflow by the
DBManager class. The changeNode(Object[] object)
of the DBManager class receives the objects which
want to change the workflow of the component.
These objects are the flow of component. The
sequence of workflow executes the process
(searchData(id,pw)) of DBManager class and passes
the objects which determine the next workflow to the
next object(object[0]). These objects can change the

flow among the permissible workflow.

public class ComponentClass {
public function (. , Object[] object, boolean flag) {
if(flag = “True”) {
Object[] obj;
for(int i = 1; i < object.length() ; i++) {
obj[i-1] = object[i];

}
object[0].changeNode(obj) }}}

Fig. 15 ComponentClass

The Figure 15 shows use the component in the
application. The method function() of the component
class ComponentClass receives the objects which can
change the workflow. The objects execute to
themselves changeNode() which has the special
function. After the object executes the function, it
passes the array of object to the next object. The
component use must recognize the structure among

the objects and the permissible workflow of the

comporient to insert the objects that represent the
workflows.

The workflow customization technique of the third
is the technique that changes the workflow inserting
the objact of the permissible workflow or the created
object dynamically. The classes that have many the
change of workflow extract to the abstract class and
dynamically can change the workflow. The interface
receives the object type of the abstract class that can
change the workflow of component dynamically.

abstract class StoreClass {
abstract void searchData(String id, String pw);

)
public ctass DBManager {

public void searchData(String id, String pw }{ ... }
}

public class ComponentClass {
public void addChangeWorkflow(Sta

StoreCiass.searchData(id, pw);
)

Fig. 16 The Dynamic Workflow Customization

Like Figure 16 the component makes the abstract
class of the changeable part and the subclass must
define the abstract method of the abstract class. The
subclass has the common method among subclasses
and the common method is specified with the regular
These
subclasses can be accessed through the interface. The

pattern by the component developers.
application developers insert the desired class to
interface that can access the internal subclass of
component. The interface of component declares the
abstract class for the type of arguments to input the
class of the workflow dynamically. The component
can use the inserted object within the component by

the substitution concept of the abstract class.

5. Case Study

The proposed workflow customization technique

verifies by developing the user authentication
component. This verification examines whether the
workflow customization changes to the desired flow.
The user authentication component is the component
that verifies the information of the user. The

information of user is stored in the database or the

AXVE JFAE2$ F2ErlolAlolA 7 507

file of the server.

LoginComponent —l

Default Workflow

Login Client {#{ DBManager DB

-| Server
FileManager > File

u -
Alternative Workflow

Fig. 17 The User Authentication Component

The Figure 17 shows the permissible workflow
when the application calls the interface of component.
The default workflows of this component are the
Login(id,pw) or the Login(id, pw, objectName, flag). If
this default interface of the component is called by the
application, the Server object calls the DBManager
object that is the object of the default workflow. The
customization of the workflow puts the object name
and flag of the desired flow to the Login function.

=] [_”‘"“_!“”‘
|

L Decompress(JacFile)

[loainid.ow) j iWoddiow |

T

o

p—

| |
|

T \ |

Fig. 18 The Sequence Diagram of the Default
Worflow

The Figure 18 is the sequence diagram that
default
authentication component. If the application Case0l

represents the workflow of the wuser
calls the 'Login(id,pw), the interface of the component
invokes the ‘Login(id,pw,null,False) of the Client.
This invocation selects the default workflow that calls
the SearchDB(id,pw) of the DBManager object.

The Figure 19 shows the process that is changed
the workflow of the component. The application put
the changeable object and the flag to the interface

Login of component. The flag is set the True. And

the inserted object is the object among Server,
DBManager, and FileManager object. The component
flows into the selected object.

Bl B Bl el el
|
|
|
|
|
|
|
|
I

I new | ‘ I

Decompress(JarFile)
p— | |
e

Custornize

—

Y ogniam Worktow l
e e~ 3 foginid, pw,ClassName true)

|
\
\
! [oaseName == "Server] l
|

searchDB(id,pw) !
‘ﬁ' searchDB(d,pw)

|
|
! {dlassName == "DBManager’] |

searchDBi, w)

>l
IdtassName == 'Fitsmmef'l >U
searchFile(id pw) | |

-
|
| | |

Fig. 19 The Sequence Diagram of the Custo-
mization Workflow

public class LoginComponentinterface {

LoginComponentlaterface() {
Decompress{componentName);

}

public void Jogin{ String id, String pw) {
Invoking the default workflow of the'LoginComponent”.
3

t

Tnvoking the method that
can change the workflow according to the name of Object.
} Name: Client.class
‘public synchronized void Decompress(§tringComponentName) { Name: Server.class
Extracting the class of the component throughthe Manifest il Name: DBManager.class
} Name: FileManager.class
» | Name: LoginC

Manifest-Version: 1.0

Fig. 20 The User Authentication Component

The Figure 20 shows the interface of the user
authentication component. This consists of the
interface for the default workflow and the interface
for the customization.

public class client {

public void login(String id, String_pw, String className_booleanflag) {

Objecto;
} Default Workflow

iff! flag) {
else {
Extracting the methods of the invoked object through the reflection facility. }

DBManger db = new DBManager();
if{ db.searchDA(id, pw)) { success*; }
else {“retry *; }
¢ = Class.forName (className);
Object o= c.newInstance();
if{ o instanceof Server)) { Server s = (Server)o; s. searchDB(id.pw); }

Yo db.searchDB(id,pw); }
Yo: f.searchFilefid,pw); }

Customized
Workﬂaw J'

else iff o instanceof D 1 {D! db = (DI
else if{ o instanceof Fil }) { FileManger f= (Fi

Fig. 21 The Client Class

508 ARAFH=EA LZEH B o] A 27 A A 5 T(A005)

The Figure 21 shows that the workflow is changed
according to the passed flag to the client class. When
the developer change the workflow of the component,
the component creates the new object using the
reflection facility.

The created object invokes the method of the
object. The invoked method must define the pattern
like the get/set method in the business point of view.
So the component users can use the common method
of the component class.

The Decompress() is the method that extracts the
internal classes of the component for the
documentation. This method extracts the component
using the manifest file of the component and can

represent the information of the component using the

reflection facility of the Java.

Fig. 22 The Documentation of the User Authen-

tication Component

public class Case01 {
public static void main(String(] args) {
LoginC 1= new LoginC face ();

Llogin("cjkim”, "pw");
Llogin("cjkim", "pw","FileManager", true);
}
}

T Fisnl B ofF Al

b #Java_Tes t¥ComponentCustonization java Case@l &

[Default Flow:DBManager] Success J
i
{

{Custonize Flow:FileManager] Success

D:%Java_Tesi¥CorponentCustonization>
Fig. 23 The Case Study using the Component

Like Figure 22, the tool of the documentation can
get the information of class, such as the name of
class, constructors, methods, attributes, and so on.

The Figure 23 shows to change the workflow of
the component through the component interface. The
application uses the component interface to change
the workflow. This example shows the default
workflow and the changed result of the workflow to
the FileManager.

6. Assessments

The Table 1 represents whether the workflow
customization of this paper supports in the other
component model, such as Java Beans, EJB, and
COM. Three component models support the basic

facilities completely, such as class packaging,
interface, introspection, and encapsulation.
Table 1 The Assessments of the Component
Models
Component
Models JavaBeans EJB . COM
Factors
Class Packaging O(Jar) O(E]B-]Jar) 0]
Interface O O O(IUnknown)
Introspection O(Beanlnfo) |O(Metadata)] O(OLE)
Encapsulation O O O
Objects. Plug-In o o o
Dynamically
Dynamic Linking X X @)
Customize Component A A A
Pr
operty o 0 o
Customization
Workflow
X X X
Customization
Full Support:O , Partial Support:A , Not Support: X

Three models can plug the object in the component
dynamically. The COM can replace the object within
the component dynamically, but the Java Beans and
the EJB must be recompiled the replaced component.
And three models do not support the mechanism that
customizes the workflow of component. Only they
support the property customization. So the existing

HEVE A3 E2¢ A=ertolAold MY 509

components support partially the customization of the
component.

7. Concluding Remarks

Until now, we studied the three techniques that
change the workflow of the component in the
business point of view. This workflow customization
extends the existing customization of the limited
facility. And it is that the component can be reused in
the business point of view. In this paper we proposed
the customization technique that selects the workflow
and changes the workflow dynamically. These
techniques are supported in the black box, so the

component can be customized easily by the

application,
In the future, we will propose the method that can

implement the complex component using the

customization technique among components. The
complex component must pass the object of any
component to other component. So we will study the
customization technique that can plug the transmitted
object in other component effectively

References

[1] Alan W. Brown, Kurt C. Wallnau, The Current State

of CBSE, IEEE Software, Sep/Oct 1998.

Robert Orfali, Dan Harkey, Client/Server Pro-

gramming with Java and CORBA, 2™ ed, John

Wiley & Sons, Inc., 1998

[3] Eduardo Pelegri-Llopart, Laurence P.G. Cable, 'How
to be a Good Bean,’ Sun Microsystems, Inc., Sep.
1997.

[4] Jun Han, 'Characterization of Components,’ Inter-

national Workshop on Component-Based Software

Engineering 1998.

Desmond Francis D’'Souza, Alan Cameron Wills,

Objects, component, and frameworks with UML :

the Catalysis approach, Addison Wesley Longman,

Inc., 1999.

Mikio Aoyama, 'New Age of Software Development

How Component-Based Software Engineering

Changes the Way of Software Development,’

International Workshop on Component-Based Soft-

ware Engineering 1998.

[7] Digre T., Business Object Component Architecture,
IEEE Software, pp.60-69, September 1998.

[8] Nicolas, P.R., Component-based Development using

[2

—

—
[$)]
—

—
[=>)
—

CORBA, at URL' http://www.ikonodyne.com
/whitecbd/workflow html, 1998.

[9] Mary C., Kathy W., Alison H., The Java Tutorial
Continued, Addion-Wesley, 1999.

[10] Klaus Bergner, Andreas Rausch, Marc Sihling,
'"Componentware The Big Picture,’ International
Workshop on Component-Based Software Engi-
neering 1998.

[11] Brown A. W. and Wallnau K. C., The Current State
of CBSE, IEEE Sqoftware, pp.37-46, Sept./Oct. 1998.

[12] Short K., Component Based Development and
Object Modeling, Sterling Software, 1997.

A4dA

19963 A71digtn Ak Al 19989
AW AI8 AL 1998d ~ &
A wddEgm g JAAMEGS 9
A, Baldoke ANAY Ay
(OMT, UML). 9 7%t 84 A AF
=(CORBA, Client-Server Web)

Py
4%

AR EER : AZEYO] B &
A2 AA3E IR

