A Dynamic Inferential Framework for Learning Geometry Problem Solving

기하 문제 학습을 위한 동적 추론 체계

  • 국형준 (세종대학교 컴퓨터공학과)
  • Published : 2000.04.15

Abstract

In spite that the main contents of mathematical and scientific learning are understanding principles and their applications, most of existing educational softwares are based on rote learning, thus resulting in limited educational effects. In the artificial intelligence research, some progress has been made in developing automatic tutors based on proving and simulation, by adapting the techniques of knowledge representation, search and inference to the design of tutors. However, these tutors still fall short of being practical and the turor, even a prototype model, for learning problem solving is yet to come out. The geometry problem-solving tutor proposed by this research involves dynamic inference performed in parallel with learning. As an ontology for composing the problem space within a real-time setting, we have employed the notions of propositions, hypotheses and operators. Then we investigated the mechanism of interactive learning of problem solving in which the main target of inference involves the generation and the test of these components. Major accomplishment from this research is a practical model of a problem tutor embedded with a series of inference techniques for algebraic manipulation, which is indispensable in geometry problem solving but overlooked by previous research. The proposed model is expected to be applicable to the design of problem tutors in other scientific areas such as physics and electric circuitry.

수리나 과학 영역의 학습은 원리 이해와 응용을 위주로 함에도 불구하고 기존의 교육용 소프트웨어 제품들은 단순 주입식이나 단답식의 학습을 지원하는 것이 대부분이어서 높은 학습 성과를 기대하기는 어려운 실정이다. 인공 지능 연구에서 지식 표현 체계나 탐색, 추론 기법이 학습기 설계에 도입되어 증명기, 모의 실험기 유형의 학습기 연구에는 상당한 진전을 보아 왔으나 여전히 실용적 수준이라 할 수는 없고 특히 문제 해결을 지원하는 학습기는 설계 모형조차 제시되지 못하고 있다. 본 연구가 설계한 기하 문제 학습기는 학습과 병행하는 동적 추론을 구사한다. 실시간 문제 해결을 지원하기 위한 정보 구성요소로서 명제, 가설 및 연산자에 의해 문제 공간을 정의하고 이들의 생성과 검증을 추론의 주요 대상으로 하는 대화식 문제 학습의 메카니즘을 탐구하였다. 성취한 결과로서 기하 문제 해결에서 필수 불가결한 요소임에도 불구, 기존 시스템이 간과해 왔던 대수 처리를 위한 일련의 추론 전략을 연계적으로 구사함으로서 실용성있는 문제 학습기의 설계 모형을 얻었다. 제안 모형은 물리, 전자 회로 등 타 과학 영역의 문제 학습기 설계에도 적용될 수 있다.

Keywords

References

  1. Anderson, J., 'Acquisition of Proof Skills in Geometry' in Michalski, R., Carbonell, J., Mitchell, T. (eds), Machine Learning, Morgan Kaufman, 1983
  2. Anderson, J., 'The Expert Module' in Polson, M., Richardson, J. (eds), Foundations of Intelligent Tutoring Systems, Lawrence Erlbaum, 1988
  3. Anderson, J., Boyle, F., Corbett, A., Lewis, M., 'Cognitive Modeling and Intelligent Tutoring,' Artificial Intelligence, vol. 42, pp. 7-49, 1990 https://doi.org/10.1016/0004-3702(90)90093-F
  4. Barr, A., Feigenbaum, E., The Handbook of Artificial Intelligence, vol. 1, William Kaufmann, 1981
  5. Barr, A., Feigenbaum, E., The Handbook of Artificial Intelligence, vol. 2. William Kaufmann, 1982
  6. Bobrow, D., Qualitative Reasoning about Physical Systems, MIT Press, 1985
  7. Brown, J., Burton, R., DeKleer, J., 'Pedagogical, Natural Language and Knowledge Engineering Techniques in SOPHIE I, II and III' in Sleeman, D., Brown, J., Intelligent Tutoring Systems, Academic Press, 1982
  8. Forbus, K., 'Qualitative Process Theory' in Bobrow, D., Qualitative Reasoning about Physical Systems, MIT Press, 1985
  9. Gentner, D., Stevens, A. (eds), Mental Models, Lawrence Erlbaum, 1983
  10. Greeno, J., 'Conceptual Entities' in Gentner, D., Stevens, A. (eds), Mental Models, Lawrence Erlbaum, 1983
  11. Koedinger, K., Anderson, J., 'Abstract Planning and Perceptual Chunks: Elements of Expertise in Geometry,' Cognitive Science, vol. 14, pp. 511-550, 1990 https://doi.org/10.1016/0364-0213(90)90008-K
  12. Larkin, J., McDermott, J., Simon, D., Simon, H., 'Models of Competence in Solving Physics Problems,' Cognitive Science, vol. 4, pp. 317-348, 1980 https://doi.org/10.1016/S0364-0213(80)80008-5
  13. Larkin, J., Reif, F., Carbonell, J., Gugliotta, A., 'FERMI: A Flexible Expert Reasoner with Multi-Domain Inferencing,' Cognitive Science, vol. 12, pp. 101-138, 1988 https://doi.org/10.1016/0364-0213(88)90009-2
  14. Lawler, R., Yazdani, M. (eds), Artificial Intelligence and Education, vol. 1, Ablex, 1987
  15. Lawson, M., Chinnappan, M., 'Generative Activity During Geometry Problem Solving: Comparison of the Performance of High-Achieving and Low-Achieving High School Students,' Cognition and Instruction, vol. 12, pp. 61-93, 1994 https://doi.org/10.1207/s1532690xci1201_3
  16. McDougal, T., Hammond, K., 'Representing and Using Procedural Knowledge to Build Geometry Proofs,' Proceedings of the Eleventh National Conference on Artificial Intelligence, pp. 60-65, 1993
  17. Michalski, R., Carbonell, J., Mitchell, T. (eds), Machine Learning, Morgan Kaufman, 1983
  18. Polson, M., Richardson, J. (eds), Foundations of Intelligent Tutoring Systems, Lawrence Erlbaum, 1988
  19. Reif, F., 'Interpretation of Scientific or Mathematical Concepts: Cognitive Issues and Instructional Implications,' Cognitive Science, vol. 11, pp. 395-416, 1987 https://doi.org/10.1016/S0364-0213(87)80014-9
  20. Sleeman, D., Brown, J., Intelligent Tutoring Systems, Academic Press, 1982
  21. Wenger, E. (ed), Artificial Intelligence and Tutoring Systems, Morgan Kaufmann, 1987
  22. White, B., Frederiksen, J., 'Qualitative Models and Intelligent Learning Environment' in Lawler, R., Yazdani, M. (eds), Artificial Intelligence and Education, vol. 1, Ablex, 1987
  23. 국형준, '효과적 문제 해결 학습을 위한 지능형 기하 교수 시스템', 한국정보과학회 논문지(B), vol. 25, no. 7, pp. 1090-1100, 1998
  24. URL1, http://www.ghg.net/clips/CLIPS.html, 'Clips: A Tool for Building Expert Systems'