UML 7jdte] AR ¢ 22

UML 7]ute] AAR]sF =

4z =44 71 227

ZHjHa 24

714

(UML-based OO Framework Modeling Techniques)

.
(=]
792 gt

=y T AL tt
€' A+ S

(Young Ran Yoo) (Dong Hyuk Park) (Soo Dong Kim Kim)

2 o FHXUE rHte] LzEedo] AP Y (CBSD)ANA tidA(Variability)ol] #§ A7+
>

a

dES AAge B3
AIUE} BFHE go

A) e 847, 2 F957) FuEn
o] A4Y+E MIE FEFVES FHEE F Ue

otk Foin =ML 98l 7wsa
shEe Aol o) golxy)

ofth. 2evt AEWESL Be GRS AU V4% FAITVEY A7) AAL, AL vige 7t
| wgel, Y AEUEE olgs AAnY A2de FERE Lo Fht B £ Ak

B =M E AXUE M A 298 F de
o2 ¥FIck 183 AXVES FE A, EF7
718kE HAZ Atk 18n g F&

zgx{]ag A, o] ZRAAE ARXIEY]
sl

Abstract

SEREERREERER
7§58z Agol by
2 PHo) ozt Thrge) BANM Al ozt
Mg Z2Aze) 8

A7l e} 3 AR &
3 7MEE COM AEW

Ryozx el HEe] 7t

The research of the variability gains more gravity in component-based software

development, because it helps to extend the reusability of the component. A domain-specific
component supports the more variability, the wider scope that the component can be applied to.

However, the more variability included in a

component, It makes the size of a component bigger, and

the cost to construct the component is rises. As a result, this disturbs making an optimized system.

In this paper, we classify the variability into 3 types, according to their features. And we propose some

implementation techniques for each type based COM. Moreover, we also propose a process to analysis
and design the variability with their artifacts, which includes some tasks from variability extraction
to implementation of it. This proposed process can be applied as a part of the component developing

process.

1. Introduction

As the component raises a principal factor in
software engineering to increase the productivity and
reusability of the software, the component-based
software engineering (CBSD), including component
component-based

extracting and implementation,

Tl Sl HHEE Y

vuandyu@sclab.soongsil.ac.kr

dhpark@sclab.soongsil.ac.kr

CeAwSy PFEy e
sdkim@computing.soongsil.ac.kr

219999 99 139

220008 19 149

_,

1
o
22
)
rjz

> rn

de
ey

o o

system construction, verification of component inter—
faces and other related techniques, raises significant
issues in software engineering. Because the
component is provided in a binary or source code
form, it must be dependent on a specific software
architecture. COM, CORBA and EJB are major
component architectures that are broadly used, and
they interest most of component developers.
Especially, COM proposed by Microsoft is adopted by
most of the commercial components, and makes
application developers construct software system
Although the

COM is dependent on the operating system of a

using binary typed components[6].

228 AREAEFI =R A LEES
hardware, owing to the marketability of Windows98
and WindowsNT that are used in the most of the
personal computer, and rich case and development
tools, it has its own unchallenged position among the
component architectures.

To maximize the reusability of the component, the
importance of extracting components from the domain
is on the increase. One of the technologies for
extracting component is commonality analysis, as
domain engineering. The commonality analysis has
focused their work on finding the commonality and
the variability in family, is known as a domain.
Identified commonalities are based of components and
variabilities must be applies to each component for
reusability extension.

In this paper, we propose a technique that
implements the variability of component in COM
architecture, and a process for extracting and
implementing the variability. Section 2 describes a
researches related to the COM and commonality
analysis. Section 3 introduces some technologies of
implementing variabilities. In Section 4, we define the
terminology about the variability, and describe the
process for implementing the variability based on
COM. Section 5 provides an example using our
approach in EC (Electronic Commercial) domain, and
this

in Section 6, we provide a

assesses and compares work to related

researches. Finally,

conclusion of our work.

2. Related Works

2.1 COM

COM (Component Object Model) proposed by
Microsoft is an object-based programming model
designed to promote software interoperability. The
softwares that participate in the interoperability may
be an applications or components, even if they were
written by different vendors at different times, in
different programming languages, or if they are
running on different machines different operating
systems. To support its interoperability feature, COM
defines and implements mechanism that allows
applications to connect to each other as a software

object[15]. To be a COM object that is a unit of

2 &8 A 27 A A 3 E(20003)

software object, a developer must define an
application programming interface (AP to allow
creation of COM object for-use in integrating client
applications or to allow diverse COM object to
interact, and the COM object must adhere to this
COM

servers the connection a client and an object.

binary structure specified by Microsoft[9].

However, once that connection is established, the
client and an object communicate directly without
having to suffer overhead of being forced through a central
piece of API code as illustrates in Figure 1[15].

COM |
Object)

3’ Locate
COM Implementation
Established

Connection

Fig. 1 Connecting and communicating a client and a

component in COM

In COM, conditions referred to

successfully construct software system based on

four are

components{6]. Basic interoperability is the first
It is how developers can make their
that with
components built by other

condition.

components can interoperate other

developers. Version
management is the second one, and it is how a
component can be upgraded without change
propagation. Third, language independence is how to
communicate between components written in different
programming languages. Last, communications by
network, i.e., how can we make our own components
that can be runed and interoperated by local and
remote system, using one simple programming model
[6]. To satisfy these conditions, some basic concepts
are defined to provide structured foundation of COM.
® Binary Standard

Binary standard is defined for function calling

UML 715kl AAAF A2 247 71 229

between components to solve basic interoperability

and language independence. This regards the
interface that is independent from a type of internal
communication

implementation as fundamental

means, without any defining about how one

programming language associates with code
standardization [4].

® Interface

To upgrade a component independently from other
components and to manage the versions of
component, once an interface is announced, the
interface and its specification can not be modified any
more[4]. That is, the COM interface is immutable.

® [ocal/Remote Transparency

From a viewpoint of a client, all component objects
can be accessed through interface. If the target server
exists in local system, then the client can directly
access the interface of the component. Otherwise, the
client can access the interface of the component
through a proxy object that have same interface as
one of the target component. From a viewpoint of
server, all callings for interface methods of the
component object are made through the interface. If
the component object is a local server, the caller can
be client. Otherwise, the caller can be stub object.
The stub object provided by COM receives a remote
method calling from proxy and translate it into
method calling of the server component, as shown in

Figure 2[6].

b |
Cross-process with
lightveight RPC

) || G

Crossnetwark with e
e

I

1

Fig. 2 Method callings between a client and a server

2.2 Commonality Analysis

Recently, due to increased interest in reusing

software related technologies, that is, component
software, framework, and etc, are critical issues to the
industry and the academic. Among these technologies,
commonality analysis is often used as a domain
engineering technique. Commonality analysis is a
domain engineering technique that emphasizes what
and deemphasizes details

is common among

application family. Therefore, commonalities are
requirements that hold for all family members[13]. By
performing a commonality analysis, we can form and
elaborate families.

To define a family, we need to formalize the
terminology used to describe the family and to predict
how family members will vary in order to identify the
scope of the family. By formalizing the terminology,
we can make communications among developers
easier and more precise. And at the end it can be used
as the guideline of finding reusable components that
a reuser wants to use.

Commonality analysis provides three merits. That
is, first, it provides abstraction. By grouping together
a lot of classes under an abstraction, it helps
decreasing the complexity of the design. Second,
grouping by commonality analysis inherently leads to
groups that are decoupled each other because each
group has low commonality with the elements in
other groups. Third, maintenance cost can be reduced
by commonality analysis. The broader a commonality
is, the longer the lifetime of a system is[12].

The variability means that how the family
members is various to each other. A designer must
consider not only the known variations but also the
variations to occur in the future. The variablities that
found in this way are categorized in accordance with
the dimension of it, and the range of values of each
variability is defined. Moreover, an analyst must
specify when the value is bound to.

Figure 3 shows a process to define families. This
process consists of two activities and three phases,
that is, plan, analyze, and quantify. In analyze phase,
common terminologies are defined, the commonality
identified,
identified. Based on the result, open issues are
identified.

of domain is and the variability is

In quantify phase, the parameters of

230

variations are defined.

ARAGFI=EA LZEL E & A 27 A A 3 EQ003)

-
Pian
team purpose & scope
of analysis

e —
¥y Process initiated

Define

ferms
—

Identify &

¥ v
Identify Identify
commonality variability
T

single discriminant; as an inheritance hierarchy, with
generic features modeled in a base class and specific
features modeled as subclasses. However, in this
pattern, more than one subclass can be instantiated in

any single system([16].

Base class
Operation A()
Operation B()

Reatm r é
L

T 1

resolve issues

Operation B()

Subclass| Subclass2
— ___‘ | Subetasss J

Operation B()

Instance l

X Family characterized
Characterization - v
Quantify
and/ar scope Define
Needs changing| parfim_e(ers of
variation
iFamin quantified
Changes required External
Review

i Review completed

Fig. 3 A systematic process for defining families-

2.3 Keepence and Mannion’s Variability
Modeling

Barry Keepence and Mike Mannion propose some
model for designing the variability [16]. They classify
the variability into 3 types, and propose pattern model
per each variability type. They classify the variability
into three types, that is, single discriminant, multiple
discriminant, and option discriminant. Single
discriminants are a set of mutually exclusive features,
only one of which can be used in a system. Multiple
discriminants are a set of optional features that are
not mutually exclusive; at least one must be used.
Last, optional discriminants are single optional
features that might or might not be used. They have
defined three patterns to model the three discriminant
types[16].

The single discriminant can be modeled as an
inheritance hierarchy in which generic features are
modeled in a base class and specific features are
modeled as subclasses. It is a single adapter pattern,
as shown in. Figure 4[16].

The multiple adapter pattern models the multiple
discriminant, like as Figure 5. The multiple

discriminant can be modeled in the same way as a

Fig. 4 Single adapter pattern

Base class Collection
Realm
— + —
i
Subclass | Subelass2

Instance ' fnstance '

Fig. 5 Multiple adapter pattem

Instance '

The option pattern models the option discriminant.
When a feature is optional, it is modeled by creating
two associated peer classes. It is not modeled
optionality as inheritance, because inheritance cannot
be optional. The associated classes must have a 0-1
relationship on at least one end. Figure 6 shows an
example of it[16].

Class A Class B
Operation 0.1 Operation
Operation Operation

Fig. 6 Option pattern

They propose a good guideline to classify the

UML 7]%ke) AR A% Zad 92 2ddy 714 231

variability by the implemented type of the variability.
Howe_ver, they do not support some techniques to
implement the variability. And the classification lacks

a consideration for type of the variability.

3. COM-based Method of Variability Im-
plementation

3.1 Variability Classification

The variability can be classified three kinds, that
is, the variability of attribute, logic, and workflow.
The variability of attribute is one about the attribute
that shows the information or state of a component.
The variability of logic is one about the logic or
algorithm in method of a component. Last, the
variability of workflow is one about the workflow
that is message flow among objects in a component.
In this paper, each of the three kinds is called as VA,
VL and VW. Generally, because the variability of
workflow is not supported by most of the commercial
components, we just deal with the former two types,
in thus work.

In this paper, we propose some possible techniques
When
component developer chooses a technique among

to implement variability per each case.
proposed techniques, he(or she) must take care of its
own merits and demerits, and factors that are a
consideration to determine one technique among
proposed techniques.

3.1.1 Variahility of Attribute

e VAl-Constant. If the values or the ranges of
the variability of property are determined before
developing a component, we can make them to
constant values of the component. Therefore, the
variabilities must be

binding time of these

specification or compile time. For example,
max_order_count = 99 in Order component is this
case.

® VA2-Method. When an application want to
change the values of the attributes of a component,
the customization methods of API that the component
provides can be called. Therefore, a value of these
attribute can be dynamically modified. For example,
set_OrderCount(int OrderCount); is this case.

® VA3-DataFile. By providing a data file that

contains the values of the variabilities, when the
component is initialized, the component reads the data
file and sets the values per each attribt_lte. In this
case, if an user or reuse; want to change the value of
these attribute, they must change the contents of the
data file. However, if there are many attributes to be
customized, this technique reduces the API methods
of the component. Table 1 shows the merits and

demerits of the techniques that we proposed.

Table 1 Comparison among techniques for variability
of attribute

Technigues Merits Drawback

-Limits the choice of
reuser

-Simple code

VAl_Constant
-Easy to use

-Simple to implement a| -Needs more APl for
component customization

VA2 Method -Dynamic customization| ~The more variability, the

by end user more overhead at appli-
cation and API of the
component

-Simplified interface -Requires an additional

-When the number of file

VA3 Dataile Fhe Yariablhtles 'is large,| -Not so dynamic (by end

it is convenient to| user)

implement an

application

3.1.2 Variahility of Logic
e VLI1_StaticMethod. If all

variability of logic are determined by coding time,

choices of the

then, we can make these choices to methods. An
application just calls the method having the logics
with a parameter that determines what logic is
chosen. However, new logic can not appended without
breaking the component.

e VL2_Method&ExtComponent. To
providing a new logic to a component, we declare. a
additional method that

delegates a calling to external component, in a

support

required interface and
component. Then reuser can use the method for the
known logics with parameter by calling method set
method, or delivery the pointer of the external
component interface for unexpected logic by calling
method setOrder. Before passing a pointer of external
component to the target component, the reuser must

make the external component, that is Component X in

232 BARAEHE=F
Figure 7, with the same required interface. And then,
any application calling the method Dolt, can obtain
the proper logic by the predefined setting.

Application Method 1 Component A "
Method 2
: setOther()

Method n

1X
U lpomponem X
L

Fig. 7 Conceptual diagram of VIL.2-Method&ExtComponent

{ Parameter !"‘ sel

Interface | | ge!!
Pointer

o VL3 _Class&ExtComponent. The Classes for
all the known logics and external component for
possible one that have same interface are provided.
Then, a reuser choose a class among classes provides
by calling method set, or pass the reference of the
external component to the component to set the
variable by calling method setOther. The same
functionality that has various logic is called by the

variable, for example, m_plX.

Component A | A
(oo

RN [setOther
o Nk 7"

o
t

'——‘ge 0 Component X I_olx

-

e

Application

Parameter e

Interface
Pointer

Fig. 8 Conceptual diagram of VL3-Class&ExtComponent

e VL4_ExtComponents. External components for
all known logics and the possible ones are provided.
First, we make external components having a same
interface for all the known logics, and then we can
add an external component for the unknown logic. In
application, the pointer of the proper component is
passed to the target component by calling method set,
and then a method of the target component is called.

The method delegates the message to each external

ArrzEO D $% A 27 A A 3 & (0003)

Application
Component 2 §
Interface get P
Pointer Component n
— =]

component by pointer variable m_plX.

Fig. 9 Conceptual diagram of VIA-ExtComponents

Table 2 shows the merits and demerits of the
technologies that we proposed. When we select only
one technology among them, we must give a careful
consideration the merits and demerits of them and

choose one among them.

Table 2 Comparison among techniques for variability

of logic
Techniques Merits Drawback
-Light-weighted -Non-extendable
VL1_StaticMethod | component
-Easy to use
-Extendable ~A speed difference
VL2_Method&Ext between inner module
Component and the outer
component
~Extendable -A speed difference
VL3 _Class&Ext |-Variability that has| between inner module
Component its own properties and| and the outer
behavior component
-Light-weighted|-Prone to run-time error
VL4 _Ext component in case of| due to lacking of static
Components heavy weighted| checking (semantic
variability problem)
3.2 Criterion

® Binding Time. This means the time that the
value(or logic or workflow) of the variability is
determined. There are 4 kinds of the binding time, i.e.,
specification, compile, build and run time.
the speed for
the

® Performance. This means

customizing the variabilities and running
component.

® Productivity. The more the degree of difficulty
of implementing the vanability is, the lower the

productivity for constructing a component is.

UML 7]%te] AAAG Zda =28 71y 233

® Size of Variability. If the variability is given
much weight in the total component, we can consider
making the variability to an external component.

® Flexibility. The flexibility means that how
many areas that the component can be applied. The
more flexibility of component is, the more reusing of
component is. However, too much flexibility means
that the functionality of the component does not
well-defined, that is, the flexibility of component is as
much as possible, not more.

o Convenience for Using. The developed
components are encouraged with convenience for
using. Although, the functionality of a component is
excellent, if the component cannot be used easily in
an application, the reusability of the component is
lowered.

® Domain Requirement. If there are some
considerations in the requirements of domain and they
are the major factor to determine a technique, we can
not ignore them.

Among these factors, some factors can conflict
with each other. Therefore, when one is emphasized,
the others can be deemphasized. Following table
shows the guides for choosing a technology among
the provided technologies (Table 3).

4. Incarnation of Variability

Table 3 Factors and techniques for
variability of attribute and logic

appliable

Vi::;]ii Attributes Logic
Techniques
Factors VAl | VAZ | VA3 || VL1 | VL2 | VL3 | VL4
Binding| Compile | O O
Time | Run o] O 0100
Performance || O | O | O [C | ©C | O
Variability Size || O O O
Productivity Ol 0O O OO0
Flexibility O] 0 o]0 |C
Convenience | O | O 10

In this chapter, we propose a process for im-—
based on COM. We
assume that the analysis process of CBSD is

plementing the variability,

accomplished, including commanality analysis, and
focus on the design and implementation processes of
variability. First, we define some terminologies for
variability analysis, and then we suggest the design
and implementation process. Because we concentrate
on the implementation of variability, we do not
consider all needed processes for developing a
component.

Before implementing the variability, we must
ceritify the variability to determine what variabilities
are implemnted, because all of the variabilities are not
subjects to customize. Some of the variabilities are
setted to constant value or predetermined logic, and
some of the variabilities are implemented to customize
the wvariability, and the others are discarded on
analysis and design time.

4.1 Terminology

In this step, we explain and propose some
terminologies related variability modeling.

o Family: A set of similar work or application or
equipment. It means a domain of application.

e Family Member: A member of family. It can be
an application.

e Commonality: Something that is true for all
family members.

® Variability: Something that is difference among
kinds of

variabilities, i.e., variability of attribute, logic and

family members. There are three
workflow.

® Variability Sibling: Some variability that have
an interaction among variabilities. For example,
variability A depends on variability B, i.e., if A has x
value of variability then B must has y value, we call
these two variabilities as a sibling.

® Parameters of Variation: The factor that
determines the variability. In EC family, if each family
member has its maximum order, the parameter of
variation may be OrderCount.

® Variant: Each case of the variability. If there
are three cases of variabilities, each case can be the

variant.

234 ARAFI=ER] AT EY 0
that

determines each variant. It is an abstract word and

® Policy: Each parameter or strategy
used to explain the process of customization

e Customization: The process that modifies a
component to coincide with an application. The
implementation of the variability is showed
customization points.

4.2 Process

In our work, we just propose the process that
connects with variability. This process can be
included an analysis and design processes for
component development as some tasks. In analysis
phase, we identify the variability of each component.
During designing the component, we assign the
identified variability to each component, and then,
determine an implementation technique for each

variability.

Analysis Phase {

Identify the Variability

A 4
Assign the Variability
to each Component

Design Phase

Determine an Implementation
Technique for each Variability

Fig. 10 Process overview

4.2.1 Identify the Variability

Some variability is extracted from family. The
variability can be the range of value that some
functionality may have, or algorithm of the
functionality, or workflow of some jobs in the family
members. Extracted variabilities are classified, and
the specification for each variahility is defined. And
then, we find the variability sibling from the extracted
variabilities. Finding the siblings of the variabilities
needs some more knowledge about family. Following
Table 4 shows the matrix to find variability siblings.
As shown in this table, variability V1 and V3 are the
variability sibling, and variability V2 and V4 are one,
also.
members of

Sometimes, we can make all

m

2 &8 A 27 P A 3 EQ003

variability sibling into one variability. If a member of
variability sibling is a variability of attribute and
another is a variability of logic and workflow, then
we can make them to one variability. However, if all
members of the variability sibling are independent
each other and they can be customized by client, and
then we must not make them into one variability.
For each variability, we can define the parameters
of variation and the range of values of each
variability. And binding time and a default value are

defined. The next Table 5 shows the example.

Table 4 Variability siblings matrix

Variabilit;
L y Vi V2 V3 Vi
Variability
Vi \4
V2 \%
Vi \%
Vy \
Table 5 Parameters of variation
Parameters, . . Binding
Med T Dome Default
Varaibility eaning vpe| Domain Time efaul
Py:OrderCount, Vi |Number of order VA | [1.99] Compile 20
P2:PaymentMean, [cash, .
Means of payment | VL Build cash
v, card, all]
PyConfirmMail. Va{Confirm mail VL | [yes, no) Run yes
PyCancelPolicy, Policy of cancel [part, | Specificatio
VL part
Vs order all] n

422 Assign the Variability to each Component

In this process, extracted and identified variabilities
are assigned to each component that identified from
the commonalities those are extracted at the domain
analysis.

4.2.3 Determine an Implementation Technique for

each Variability

In this task, a technique to implement per each
variability is determined based on COM architecture.
We can make Table 6 by using the guides proposed
in chapter 3. After assigning a technique to each
variability, we specify the variability in component
Figure 11 shows the

specification. component

UML 719te] AR A& =Pz 243 7|9 235
Table 6 Implementation technique of each variability in a component
. e . . L . Applied
Component Parameters, Varaibility Type Domain Binding Time Default . R
Technique
CMP1 P1:0OrderCount, V1 VA [1..99] Compile 20 VAl
P2:PaymentMean, V2 VL {cash, card, alll Build cash VL1
CMP2
P3:ConfirmMail, V3 VL {ves, nol Run ves VL2
CMP3 P4:CancelPolicy, V4 VL [part, all] Specification part VL3
specification including variability specifiaction. focus on the Internet shopping mall. The main

Because a component specification is beyond of the
scope of our work, we do not refer to this component
specification.

Component Specification

Component
Server Type : In-Process / Local / Remute
Thread Type : STA / MTA

: component_name

Interface inferface_name : upper_interfacel, ...

Version 110
method_name_I(signature) : return_type (for variability of A/L)
Pre : pre_condition
Post 1 post_condition
Desc ...

End Method
method_name_2(signature) : renurn_type

End Method

End Interface

functionalities of shopping mall are searching goods,
ordering, delivery, and so on. We especially pick up
the Ordering among the functionalities, because the
ordering is the most important part and has some
variabilities to implement.

5.1.1 Identify the Variability

First, we define the family. In our case study, the
family is EC domain, and family members can be
'Lotte Shopping Mall’,
'Samsung Shopping Mall’, and so on. We presuppose

'Amazone Book Seller’,

that the commonalities of this family are extracted
some components are identified from the
Then find the
variabilities from our family, as shown in Table 7. In

and

extracted commonalities. we

our case study, variability siblings are not found.

Variability . L o .
Variability of Attrubute Therefore, the matrix of variability siblings is
; lffi’:bm name : applied technique -> method_name omitted.
Variability of Logic
1. logic name with logic: applied technique -> method_name Table 7 Extracted variabilities
End Variability Variability
Type Description
End Component D
Vi VA |The maximum number of order item is various. (9-99)
Fig. 11 Component specification with vanablhty Spect= v VA The maximum day of waiting money coming in for
fication ° orders is various. (-7 days)
When customer want to cancel order, according to a
Vs VL [canceling policy in a component, the way to determine if
5. Case Study and Assessment the order can be canceled or not is diffcrent.
When a customer inquiries the registered orders, the
V. VL
5.1 Case Study ! sequence of inquired orders is various.

We make a selection EC (Electronic Commerce)
domain as a family for our case study. EC is in the
The
priority of EC in the industrial is higher than before.

spotlight among applications using Internet.

The most typical case of EC is the advertisement. We

5.1.2 Assign the Variability to each Component
Under that the
extracted and identified from the commonalities of the

assumption components are

family, assign identified variabilities to components.

236

ARSI =ER] AT

Table 8 Parameters of variation

Edio] 2 &8 A 27 A A 3 (20003

Parameters, . . . Binding '
Varaibility Meaning Type Domain Time Default
P1:0OrderCount, V, Number of order VA [1..99] Run 20
P>:WaitingDay, V2 Number of waiting days VA [1.7] Run 2
Py:CancelPolicy, V3 Policy of canceling order VL [impossible, confiltlonal possible, Run impossible
possible]
. L [OrderNo, Itemld,
PiInqueryOrder, V4 | Sequence of inquiring VL DeliveryOrder] Run OrderNo
Table 9 Determined techniques to implement the identified variabilities
Parameters, . Binding Applied
C t T D Default
omponen Varaibility ype omarn Time e Technique
P1:0rderCount, V, VA [1..99] Run 20 VA3
P2 WaitingDay, Vs VA [1.7] Run 2 VA3
OrderManagement |p.CancelPolicy, V5 | vi | Hmpossible, conditional possible, | p | i o VL3
possible]
. [OrderNo, Itemld,
PsInqueryOrder, V. VL DeliveryOrder] Run OrderNo VL1

In this use case, we just extract the variability related
the
assigned table from the variabilities to components is
omitted.

5.1.3 Determine an implementation Technique for

to OrderManagement component, therefore

each Variability

In this task, we determine the technique for the
assigned variabilities per each component. Because
each technique has its own merit and demerit, the
requirement and objectives of an application must be
considered to choose a technique. The following table
shows the results of our case study.

5.1.4 Implementation Example
we implement two types of the
VA, VL, from the result of the
previous case study. That is, the variability P1 and P3
implemented by the
VA3_DataFile and the variability P3 is implemented
by using the technique VL3_Class&ExtComponent.

In this step,
variability, i.e,

are using technique

Each implementation result is as follows.
5.1.4.1 Implementation of variability of attribute
The type of the variabilities P1 and P2 is VA type.

The techniques for variability of attribute are
introduced in chapter 3. Among those techniques, we
choose the VA3_DataFile techinque to set Order-
Count and WaitingDay attributes of a component at
once.

Scenario

When a customer orders some goods, the quantity
is limited to a value, which is different per each
shopping mall. And the maximum days of waiting
money for order are various.

® Solution

We make a data file that has values of those
variables. And then, the variables are set by initial
method of the component, when the component is
loaded.

w Source Code

The CreateOrder method creates an order id and
returns it. The AddOrderltem adds an item specified
by nltemID to an order specified by nOrderlD. The
SetChecked method transforms the Not Paid state of
the order specified by nOrderID to the state of Paid..

The Clean method removes orders not paid till a due

UML 7ixte] A= Ze|d 93 243 7] 237

date. The Init method takes a parameter a file name
that has in pairs an attribute’s name and its value,
reads that file and initializes the releated variables.
The follwing figure shows the core of the source
code.

interface IAddOrderCam : IUnknown
{
HRESULT CreateOrder ([out, retval] long* pOrderID);
HRESULT AddOrderItem([in] long nOrderID, [in] lcng niltemID,
[out, retval) leng* pResult);
HRESULT SetChecked([in] long rOrderID, [out,retval] long* pResult);
HRESULT Cleand(); 3
HRESULT Init([in] BSIR filename); |

Fig. 12 IDL of 1AddOrderCom interface

clasg CAddOrderCom :
{

public IAddOrderCom

private:
long m_nMaxOrder;
long m_nWaitDays;

}
CAddOrderCom: : Init (String filename)
{
// Read ‘filename’ file
// And then parse it into their field name and data
// Then set m MaxOrder and m_nWaitDays
m_ﬂnMaszdet = Parse(filenama, “m nMaxOrder”);
m nWaitDays = Parse(filename, “m_ nWaitDays’}:

Fig. 13 Pseudo source codes of CaddOrderCom com-
ponent

5.1.4.2 Implementation of variability of logic

The type of the variabilities P3 is VL type. Among
those techniques for wvariability of attribute are
introduced in chapter 3., we choose the
VL3_Class&ExtComponent techinque to determine
logic for canceling order.

& Scenario

When a customer wants to cancel the orders which
has been ordered, the ways to determine whether the
order can be canceled are various per each
application.

Solution

We make another interface to implement the
variability, and classes that implement the interface to
support predefined variability. And we add set method
to set an undetermined policy to our pointer.

w Source Code

interfaces are used.
Interface IVL3CancelOrder has methods of which
roles is setting the policy of canceling order and the
Another
interface IVL3CancelPolicy has a method that returns

In this component, two

method that transacts canceling order.

whether a canceling order is allowed. Figure 14

shows the definition of interfaces.

Interface IVL3CancelOrder : Iunknown
{
HRESULT SetPolicy{long nPolicy);
HRESULT SetOtherPolicy (IVL3CancelPolicy* pCustamCom); |
HRESULT CancelOrder (1ong nOrderID, long* pResult); 1
)i
Interface IVL3CancelPolicy : Iunknown
{
HRESULT CanBeCanceled (long nOrderID, long* pResult);

)

Fig. 14 IDL of IVL3CancelOrder and IVL3CancelPolicy

interface

For VL3_Class&ExtComponent type of variability
to be implemented, as presented in Figure 14, both of
the classes within a component and an external
component need to have a same interface. Therefore,
they are substitutable each other. However, the inner
classes are hidden in the component, and do not need
the class factories for them. We create the class
factories only for an external component and a main

component, as shown in Figure 15.

class ATL_NO_VTABLE CVL3MainCom :
public CComObjectRootEx<CComSingleThreadModel>,
public CComCoClass<CVL3MainCom, &CLSID_VL3MainCom>, |
public IVL3CancelOrder

class ATL_NO_VTABLE CVL3CancelPolicyl :
public CComObjectRootEx<CComSingleThreadModel>,
public IVL3CancelPolicy

class ATL _NO_VTABLE CVL3CancelPolicy2 :
public CComObjectRootEx<CComSingleThreadModel>,
public IVL3CancelPolicy

class ATL_NO_VTABLE CVL3Custam :
public CComObjectRootEx<CComMultiThreadModel>,
public CComCoClass<CVL3Custom, &CLSID VL3Custom>,
public IVL3CancelPolicy

Fig. 15 Definitions of the classes

As shown in Figure 15, class CVL3CancelPolicyl
and CVL3CancelPolicy2 are hidden whthin an order
component, therefore, those classes do not inherit
from CComCoClass which has codes responsible for

238 FEAGE=FA 2ZEMNY & &§ A 27 W A 3 520003

creating a class factory. However, class CVL3Custom
is an external component. Because class CVL3-
CancelPolicyl, CVL3CancelPolicy2 and CVL3Custom
inherit from the interface IVL3CancelPolicy, they are
substitutable. As a result, the code excluding the code
of setting a policy of canceling order is able to be
independent of the type of the module used.

In Figure 16, the main source of class
CVL3MainCom is represented. The method SetPolicy
is invoked when a reuser sets a policy of caneling
order. As shown, if that method is invoked taking the
value 1 as the parameter, then the policy is
impossible. And if it is invoked taking the value 2 as
the parameter, then the policy is Conditional possible.

Recently, commonality analysis includes the research
of the variability, However, it just proposes an
analysis process for finding and identifying the
variability. And, in Keepence and Mannion's work,
they classify the variability by their implementation
type and propose a pattern-based model for them.
However, they do not include implementation
technigues. In our work, we propose some techniques
to implement those variabilities based on COM, and
propose the process to implement the variability in

CBSD.

Table 10 Comparison between the proposed techniques
and other techniques

Instead of it, if the method SetOtherPolicy is invoked | Keepence and .
Comparison items Commonality Mannion’s Proposed
taking the interface IVL3CancelOrder of an external analysis work technigues
component, then the policy is customized by the . Partially
Component Platform Independent | Independent dependent
external component. At last, the method CancelOrder cpende
. . Appling to Com nt N N Yo
is used when a reuser actually implements the code of pping To Lompond o o i
. Related with CBSD Yes Yes Yes
canceling order. It checks whether the requested order
i i . X Lo Implementation N v Partially
is possible to be canceled, and if possible, then Variability | Typq © o support
Classification
remove that order from an Order DB Characteristics No No Yes
Identifving Technigue Yes No Yes
(smmmomp CVLRMainCam: : SetPolicy (long nPolicy) Design Techniques No Yes Yes
switchnPolicy) { Implementation Techniques No No Yes
case 0: break;
case 1: CVL3CancelPolicyl::_CreatorClass: :CreateInstance (NULL, Partially
IID IV13CancelPolicy, (void**)am pCancelPolicy); Concrete Artifact No Yes
break; support
case 2: CVL3CancelPolicy2::_CreatorClass: :Createlnstance NULL, Process No No Support

1ID_IVL3CancelPolicy, (void**)em pCancelPolicy);
break;
default: CvL3CancelPolicyl::_CreatorClass::Createlnstance (NULL,
1ID_IVI3CancelPolicy, (void**)sm pCancelPalicy);
b
]
STOMETHODIMP CVL3MainCom: : SetOtherPolicy (IVI3CancelPolicy *pPolicyCom)
t
m pCancalPolicy = pRolicyCam;
pRolicyCon->AidRef {) ;
3
STIMETHODIMP CVL3MainCan: :CancelOrder (long nOrderID, long * pResult)
{
m pCancal Policy->CanBeCanceled (nCrderID, sfPosaible);
// possible to cancel an order transact actually a canceling process,
if (fPossible != 0) {
*pResult = 1; // successfully canceled order.
} else {
*pResult = 0; // keep fram canceling this order.
i

Fig. 16 Main source of class CVL3MainCom

5.2 Assessment
5.2.1 Comparison with other researches
researches on the

There are not many

customization of the component up to the present.

Table 11 Comparison of proposed techniques among
component platforms

Proposed Techniques COM EJB
VAI_Constant Support | Support
Variability 5 Method S Support
of attribute —vetho upport |ppo
VA3 _DataFile Support | Support
VL1_StaticMethod Support | Support
Variability VL2_Method&ExtComponent|{| Support | Support
of logic VL3_ Class&ExtComponent || Support [Not support
VLA_ ExtComponent Support | Support

5.2.2 Comparison between other component platform

To find some reusability of our method and

UML Z1¥ke] AAAG L9z mda 7y

artifacts for other component platform, that is, EJB,
Table 11 shows the
comparison of proposed implementation techniques
The VL3_

in EJB,
because of technical differences to build a component.

we make following tables.

among existing component platforms.
Class&ExtComponent, can not applied
However, other techniques have no problem in EJB.

Table 12 shows the comparison of artifacts among
existing component platforms. From the result, we
can know that the all artifacts of our method can be
also reused in E]B.

Table 12 Comparison of proposed artifacts
among component platforms

Artifacts COM | EJB
Variability siblings Matrix Yes | Yes
Parameters of Variation Yes | Yes
Implementation Techniques of each Variability
R Yes | Yes
in Component
Component Specification Yes | Yes

6. Conclusion and Future Work

6.1 Conclusion

In this paper, we classified the variability into three
types, i.e., the variability of attribute, logic, and
workflow. And we proposed some tailoring techniques
for the variability of attribute and logic, and a process
to extract, identify and implement. We defined some
terminologies related to variability implementation,
and proposed a systematic approach to implement the
variability when components are developed. The
implementation techniques for the variability of
workflow will be studied as our future work.

6.2 Future works

In this paper, we just propose the design and
implementation techniques for the variability of
attribute and logic based on COM. The applicability
to other component platforms of proposed techniques
is a part of our future work. And, the research of the

variability of workflow has to continue.

—
—_
fa—

[9]

(101

[11]

[12]

(13]

[14]

[16]

239

2 gs

Dale Rogerson, Inside COM, Microsoft Press, 1997.
Guy Eddon, Henry Eddon, Inside DCOM, Microsoft
Press, 1998,

Desmond E. D’Souza, Alan Cameron Wills, Objects,
Components, and Frameworks with, Addison-
Wesley, 1999.

Clemens Szyperski, Component Software, Addison
Wesley, 1998.

] Don Box, Essential COM, Addison Wesley, 1998.

Sara Willliams and Charlie Kindel, The Component
Object Model: A Technical Overview , Microsoft
Release, http://msdn.microsoft.com/library/techart/
msdn_comppr.htm, October, 1994.

Capt Gary Haines, David Carney, John Foreman,
Component-Based Software Development / COTS
Integration, CMU Software Technology Review,
October, 1997.

Alan W. Brown, Kurt C. Wallnau, Engineering of
Component-Based Systems, 7-15. Component-
Based Software Engineering:Selected Papers from
the Software Engineering Institute. Los Alamitos,
CAIEEE Computer Society Press, 1996.

Ed Morris, Emil Litvak, Component Object
Model{COM), DCOM, and related Capabilities, CMU
Software Technology Review, http://www.sei.cmu.
edu/str/descriptions/com_body.html, June, 1997.
Erich Gamma et al, Design Pattern : elements of
reusable object-oriented software, Addison Wesley,
1995.

Mary Kirtland, Interface and Component Design
with COM, http.//www.microsoft.com/com/
presentations/default.asp, February, 1998.

James O. Coplien, Multi-Paradigm DESIGN for C++,
Addison Wesley, 1995.

David M. Weiss, Commonality Analysis @ A
Systematic Process for Defining Families, Second
International Workshop on Development and
Evolution of Software Architectures for Product
Families, February 1998.

James O. Coplien, Daniel Hoffman, and David Weiss,
Commonality and Variability in Software
Engineering, IEEE Software, 15(6):37-45, Novem-
ber/December 1993.

Microsoft, The Component Object Model
Specification Draft Version 0.9, Microsoft Press,
October, 1995.

Barry Keepence, Mike Mannion, Using Patterns to
Model Variability in Product Families, IEEE
Software, July/August, 1999.

240 HRAFI=EA AZEY O] B && A 27 W A 3 ZQ003

R

19939 T3 Aos AAALet B9,
f 19939 ~ 19969 A SEAZE
o A 27 19969 ~ 1998 3
| WARAE dRAYRE TE 19999 ~
7 sUvem gerd AEELG 4
A4 A$E B4 Eoke CBD, =0l

) E g

19999 $AdeE Fushs FEE
2 2. 19999 ~ dA Sasha
g ARELS g AgE B
4 Fobe AAAY PYE, PTVE T

8,

-
A F T

1984 Pz FYdstm [AstE &
A(&tAL. 1988 The University of
lowa, Z4HE AL 1991d ~ The
University of Towa, A4Fg €hAL 1991
d o~ 19939 =E A ARAdG A9l
- A 19943 AAA AzEA

£ AYATd 1959 ~ WA SAvsm AFH
Zmg BARCE ANAY APPEE, BAAA AFY,
Z Al

