넙치 Paralichthys olivaceus 초대 배양 간세포의 난황 전구물질 합성에 미치는 estradiol -17β 와 $2,4-\mathrm{D}$ 의 영향

여인규•최미경* • 이영돈** . 임윤규*** . 허문수 • 이제희 • 송춘복
제주대학교 해양생산과학부, *국립수산진흥원,
제주대학교 해양연구소, *제주대학교 수의학과

Effects of Estradiol-17ß and 2, 4-D on Vitellogenin Synthesis in the Hepatocytes Primary Culture of the Olive Flounder, Paralichthys olivaceus

In-Kyu Yeo, Mi-Kyung Choe*, Young Don Lee**, Yoon-Kyu Lim ${ }^{* * *}$, Moon-Soo Heo, Je Hee Lee and Choon Bok Song
Faculty of Applied Marine Science, Cheju National University, Cheju 690-756, Korea
*National Fisheries Research and Development Institute, Pusan 619-900, Korea
**Marine Research Institute, Cheju National University, Cheju 695-810, Korea
***Dept. of Veterinary Medicine, Cheju National University, Cheju 690-756, Korea

Effects of estradiol-173 (E_{2}) and 2, 4-dichlorophenoxy acetic acid (2,4-D) on vitellogenin (VTG) production were investigated in primary hepatocyte culture of olive flounder, Paralichthys olivaceus. Highest survival rate of hepatocyte were observed at $27^{\circ} \mathrm{C}$, which markedly declined equal to 50% of those of $15^{\circ} \mathrm{C}$. Vitellogenin production peaked at the concentration of $10^{-6} \mathrm{M} \mathrm{E}_{2}$. No effect was observed on VTG production at various concentrations of 2, 4-D. However, a low concentration of $2,4-\mathrm{D}\left(\mathrm{ie}, 10^{-8} \mathrm{M}\right.$) only appeared increased VTG production. E_{2} or $10^{-8} \mathrm{M} 2,4-\mathrm{D}$-primed VTG production was markedly inhibited by the addition of $10^{-6} \mathrm{M}$ tamoxifen to the culture medium ($P<0.01$). Inhibition was not affected by combinational treatment with $10^{-6} \mathrm{M} \mathrm{E}_{2}$ and $10^{-6} \mathrm{M} 2,4-\mathrm{D}$. These results from the current investigation suggest that 2,4-D mimics E_{2}, but the mechanism of reaction in inducing the E_{2} receptor are different in VTG production in oliver flounder hepatocytes.

Key words : 2, 4-dichlorophenoxy acetic acid, vitellogenin synthesis, tamoxifen, hepatocyte primary culture, Paralichthys olivaceus

서 론

-

Vitellogenin (VTG)은 난생동물의 난황 전구체로, 여포 세포로부터 분비된 estradiol- $17 \beta\left(\mathrm{E}_{2}\right)$ 의 자극에 의해 간

장에서 합성되어 혈핵으로 분비된다(N g and Ider, 1983; Mommsen and Walsh, 1988). 일반적으로 VTG의 합성은 E_{2} 의 작용에 의한 것으로 알려져 있으나, 최근 환경 오 염을 일으키는 화학물질에 의해서도 그 합성이 유발되 는 것으로 알려지고 있다. 이에 따라 수-해양 동물을

대상으로 환경오염에 대한 biomarker로서 VTG에 관한 연구가 활발히 진행되고 있다(Sumputer and Jobling, 1995; Hashimoto et al., 2000).
VTG는 어류의 종에 따라 합성 유도하는 호르몬의 종 류가 다양한 것으로 알려져 있다. 무지개숭어 Oncorhynchus mykiss에 있어서의 VTG 합성은 E_{2} 의 단독 투 여만으로 유도되어지지만 (여, 1998), 뱀장어 Anguilla japonica의 경우에 있어서는 E_{2} 의 단독 투여로는 합성 이 이루어지지 않고 growth hormone 또는 prolactin을 동시 투여하여야 만이 합성되는 것으로 알려져 있다 (Kwon and Mugiya, 1994). 그리고, 금붕어 Carassius auratus와 망둥어 Gobius niger에 있어서는 testosterone, methyltestosterone 및 methylandrostenedio과 같 은 웅성호르몬에 의해 VTG의 합성이 유도되는 것으로 보고되고 있다(Hori et al., 1979; Le Menn et al., 1980).
더욱이 최근 환경의 오염에 따라 화학합성 물질, 가정 및 산업 폐기물들이 해양으로 유입되어 축적됨으로써 생태계를 파괴시키고 있다. 이러한 오염물질들 중 E_{2} 와 유사한 작용을 하여 내분비계를 교란함으로서 생물의 번식능력을 파괴시키는 물질들을 환경호르몬이라고 한 다. 환경호르몬에는 제초제 및 살충제 등의 농약류, 그리 고 dioxins, polychlorinated biphenyl 및 bisphenol A 둥 올 포함하여 100 여 종이 넘는 물질들이 포함되어 있다. 그 중 제초제에 포합되어 있는 2,4-dichlorophenoxy acetic acid (2,4-D)는 1950년에 농약으로 동록되어 1995년까지 폭넓게 사용되어진 합성 auxin (식물호르몬 의 일종)으로, 벼농사 및 밭농사는 물론 과실농사에 이 용되어진 물질이다(Short and Colborn, 1999). 또한 저농 도의 $2,4-\mathrm{D}$ 는 해조류의 성장을 촉진시키는 것으로 알 려져 해조류의 배양에도 이용되는 것으로 알려져 있다 (Joseph and Chennubhotla, 1999). 랫트에 있어서는 적 혈구의 소형화, 혈중 triiodothyronine 및 trtraiodothyronine의 감소, 난소 및 정소 중량의 감소, 간장, 신장 및 갑상선의 비대 둥이 보고되고 있다(Charles et al., 1996). 또한 장시간 $2,4-\mathrm{D}$ 에 노출된 Leydig세포에서는 steroid 합성이 촉진된 반면, in vivo에서의 쳘장 testosterone 농도는 감소되었다고 보고되고 있다(Zhavoronkov et al., 1998). Cheney et al.(1997)은 담수 패류에 있 어서 $2,4-\mathrm{D}$ 는 저농도 또는 단기간의 노출에는 E_{2} 와 유 사한 대사작용을 나타내었으나, 고농도에서는 오히려 억 제하는 것으로 보고하고 있다. 이와 같이 $2,4-\mathrm{D}$ 는 내분 비를 교란하는 물질인 것으로 알려져 있으나, 어류에 미 치는 영향에 대해서는 아직 밝혀져 있지 않다.
그리고, 해양동물의 환경호르몬 연구는 대부분 in vivo 에 의한 것으로 그 기전을 밝히기에는 불충분한 형편으

로, 작용기전의 해명을 위해서는 무엇보다도 in vitro의 연구가 수행되어져야 할 것이다. 이에 따라 biomarker 로 사용되어지는 VTG의 합성 기관인 간세포의 배양이 필요하지만, 아직까지 뱀장어 및 일부 담수어류률 제외 한 어류의 간세포배양은 이루어지지 않고 있다. 따라서 본 연구에서는 양식어류인 넙치 간세포의 최적 배양조 건을 밝히고, E_{2} 의 농도에 따른 VTG의 합성 변화를 조 사하였다. 그리고 합성 식물호르몬의 일종인 $2,4-\mathrm{D}$ 률 이용하여 in vitro에서의 \mathbf{E}_{2} 유사작용에 대하여 조사하였 다.

재료 및 방법

1. 간세포의 배양

넙치 Paralichthys olivaceus는 2000년 2월에서 6월에 결쳐 제주대학교 해양연구소에서 사육한 체중 640 ± 24 g 인 개체를 사용하였다. 넙치는 $0.01 \% 2$-phenoxyethanol로 마취를 시킨 후, 담낭과 함께 간장을 분리하였다. 간문맥에 Ca^{2+} 을 첨가하지 않은 관류용 $\operatorname{buffer}(120 \mathrm{mM}$ $\mathrm{NaCl}, 1.22 \mathrm{mM} \mathrm{MgSO}{ }_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}, 4.7 \mathrm{mM} \mathrm{KCl}, 1.25 \mathrm{mM}$ $\mathrm{KH}_{2} \mathrm{PO}_{4}, 23 \mathrm{mM} \mathrm{NaHCO} 3, \mathrm{pH} 7.4$)를 약 10 분간 관류하 였다 ($5 \sim 8 \mathrm{ml} / \mathrm{min}$.) 그 후 $0.3 \mathrm{mg} / \mathrm{ml}$ collagenase (Sigma) 및 $0.98 \mathrm{mg} / \mathrm{ml}$ 소 혈청 알부민 (Sigma)을 포함한 관 류용 buffer에 약 20 분간 ($5 \sim 8 \mathrm{ml} / \mathrm{min}$.), 그리고 2 mM EDTA를 첨가하여 Ca^{2+} 및 Mg^{2+} 을 제거한 관류용 buffer에 약 10 분간 각각 관류하였다. 관류 후 간장은 100 ml 비이커에 넣어 Ca^{2+}-free 관류용 buffer로 3회 세척한 후, 50 ml 의 관류용 buffer 내에서 해부가위로 잘 게 분산시켰다. 분산된 간세포는 피펫으로 더육 분리하 여 가제로 여과시킨 후에 원심분리 ($700 \mathrm{rpm}, 2$ 분)를 3 회 반복하여 간실질세포 이외의 성분(비실질세포, 파열 세 포, 세포의 파편 및 적혈구 등)을 제거하였다.
간세포는 양전하를 처리한 $250 \mathrm{ml} \mathrm{T} / \mathrm{C}$ 플라스크 (Falcon)당 2×10^{-6} 개의 세포 밀도로 배양하였다. 배양에는 $0.2 \mu \mathrm{M}$ Bovine insulin (Sigma), Streptomycin ($100 \mu \mathrm{~g} / \mathrm{ml}$), Penicillin $(70 \mu \mathrm{~g} / \mathrm{ml})$ 및 $\mathrm{NaHCO}_{3}(23 \mathrm{mM})$ 을 첨가한 William's medium (Life Technol. Inc.)을 이용하였다. 간 세포는 배양액 20 ml 를 첨가하여 배양하였다. 사전 배양 은 3 일간 행하고, 배양액은 3 일 간격으로 교환하였다. 배 양온도는 $15 \sim 30^{\circ} \mathrm{C}$ 의 범위에서 $2.5^{\circ} \mathrm{C}$ 간격으로 7 구간을 설정하여 최적 온도를 조사하였다.

2. 배 양세포의 생존율

배양세포의 생존율 파악을 위해 실험 종료 후 0.03%

EDTA를 포함한 인산 buffer $(137 \mathrm{mM} \mathrm{NaCl}, 2.68 \mathrm{mM}$ $\left.\mathrm{KCl}, 8.09 \mathrm{mM} \mathrm{Na}{ }_{2} \mathrm{HPO}_{4}, 1.47 \mathrm{mM} \mathrm{KH} 2 \mathrm{PO}_{4}\right)$ 를 첨가해 진동시켜 배양접시로부터 배양세포를 분리시켰다. 0.05 \% crystal violet이 포함된 0.1 M citric acid로 분리된 배 양세포를 2 시간 동안 염색하였고, 생존한 세포 수는 Thomas 혈구계산판을 이룡하여 계산하였다.

3. E_{2} 및 $2,4-\mathrm{D}$ 의 농도 변화에 따른 VTG 합성

E_{2} (Sigma) 및 2,4-D(Dr. Ethrenstofer GmbH)는 95% 에탄올로 용해한 후, 3 일간의 사전 배양 후에 $10^{-8} \mathrm{M} \sim$ $10^{-5} \mathrm{M}$ 의 농도를 첨가하여 실험을 행하였다. 배양액은 E_{2} 첨가 $0,3,6$ 및 9 일째를 회수하여 $3,000 \mathrm{rpm}$ 에서 20 분간 원심분리를 하였다. 그리고, $2,4-\mathrm{D}$ 의 작용기전에 대하여 조사하기 위하여 6일 동안 E_{2} 및 $2,4-\mathrm{D}$ 에 의해 VTG의 합성을 유도한 후 E_{2} 길항제로 알려진 tamoxifen (Sigma) $10^{-5} \mathrm{M}$ 을 첨가하였다. 단백질 분석올 위해 Laemmli (1970)의 방법에 따라 7.5% SDS-PAGE로 분 리하여, coomassie brilliant blue R-250으로 40 분간 염 색하였다. 넙치 VTG의 판별은 SDS-PAGE 후 성성숙기 에 나타나는 암컷 혈청 특이 단백질인 분자량 175 kDa 의 결과에 따랐다.

4. 통계 분석

실험 결과는 Student's t-test 또는 One-way ANOVA 를 실시하여 Fisher's PLSD-test를 행하였으며, 통계적 유의성은 $P<0.01$ 로 판단하였다. 퍼센트 결과는 우선 arcsine의 수치로 전환 후 통계 분석을 하였다.

결 과

1. 배양세포의 생존율

넙치의 간세포는 collagenase에 의해 한 마라 당 8.5 $\times 10^{8}$ 개의 간세포가 분리되었으며, 그때의 생존율은 90% 이상으로 나타났다. Fig. 1은 $15 \sim 30^{\circ} \mathrm{C}$ 의 7 구간의 실험군에 대한 배양 간세포의 생존율을 나타낸 것이다. 넙치의 배양 간세포는 $27.5^{\circ} \mathrm{C}$ 에서 배양 후 4 일 및 8 일 에 각각 14.9% 및 17.9% 로 감소하여 가장 높은 생존율 을 나타내었다. 그러나, $20 \sim 27.5^{\circ} \mathrm{C}$ 에서의 배양조건에서 는 유의한 차이는 나타나지 않았다. $17.5^{\circ} \mathrm{C}$ 에 있어서는 생존율이 가장 높은 $27.5^{\circ} \mathrm{C}$ 실험군에 비해 유의하게 낮 은 생존율을 나타내었다 $(P<0.05)$. 특히, $15^{\circ} \mathrm{C}$ 의 저온에 서는 배양 후 4 일 및 8 일에 각각 39.6% 및 47.6% 로 급 격히 생존율이 감소하였으며, 생존 세포에 있어서도 간 세포배양에서 나타나는 작은 세포 덩어리률 형성하지

Fig. 1. Effect of temperature on the survival rate in primary culture of oliver flounder hepatocytes for 8 days. Vertical bars represent the average (mean \pm SE) percentage of five experiments. ${ }^{*} P<0.01$ for $27.5^{\circ} \mathrm{C} .\left(-\mathrm{O}-, 15^{\circ} \mathrm{C} ;--, 17.5^{\circ} \mathrm{C} ;-\square-, 20^{\circ} \mathrm{C}\right.$;-, $\left.22.5^{\circ} \mathrm{C} ; \triangle, 25^{\circ} \mathrm{C} ;-27.5^{\circ} \mathrm{C} ;-x-30^{\circ} \mathrm{C}\right)$

못하였다.

2. E_{2} 및 $2,4-\mathrm{D}$ 의 농도변화애 따른 VTG 합성

$\mathrm{E}_{2} 10^{-8} \mathrm{M} \sim 10^{-5} \mathrm{M}$ 의 농도률 첨가하여 합성된 VTG의 SDS-PAGE 결과는 Fig. 2와 같다. 합성 단백질은 배양 액에 E_{2} 를 첨가한 후 3 일 간격으로 2희 교환하였으며, 분석은 6 일째의 배양액을 회수하여 실시하였다. 그 결 과, VTG의 밴드는 E_{2} 농도의 증가에 따라 염색성이 높 아져 $10^{-6} \mathrm{M}$ 에서 가장 진하게 나타났다. 반면, $10^{-5} \mathrm{M}$ 의 최고농도에서는 오히려 염색강도가 다소 약해지는 결과 를 나타내었다. 이때의 optical density를 비교해 보면, $10^{-8} \mathrm{M}, 10^{-7} \mathrm{M}$ 및 $10^{-6} \mathrm{M}$ 에서 각각 $0.08,0.14$ 및 0.26 의 수치률 나타내었다 (Fig. 3). 본 실험에서 사용한 가장 고 농도인 $\mathrm{E}_{2} 10^{-5} \mathrm{M}$ 에서는 VTG 합성이 급격히 감소하여 0.10 의 수치를 나타내었다. 그리고 E_{2} 를 첨가하지 않은 대조군에 비해 E_{2} 를 첨가한 모든 실험군에 있어 VTG의 양이 유의하게 높은 수치를 나타내었다 $(P<0.01)$. 이러 한 결과로 보아, 넙치의 간세포 배양을 이용한 VTG의 합성에는 $\mathrm{E}_{2} 10^{-6} \mathrm{M}$ 전후가 가장 적합한 것으로 여겨진 다.
$2,4-\mathrm{D}$ 는 $10^{-8} \mathrm{M} \sim 10^{-5} \mathrm{M}$ 의 농도를 사용하였으며, 배 양액은 3 일 간격으로 교환하여 배양 후 0 일째와 6 일째 의 합성 단백질의 SDS-PAGE상을 나타내었다(Fig. 4). $2,4-\mathrm{D}$ 의 첨가에 따른 배양 간세포의 생존율은 E_{2} 를 첨

Fig. 2. SDS-PAGE showing the effect of various concentrations of E_{2} in the oliver flounder hepatocyte culture on the induction of VTG (arrow). Spent media were analyzed on day 6 after E_{2} addition. M: molecular weight (MW) marker. CBB stain.

Fig. 3. Effects of various concentrations of E_{2} on VTG production in primary cultures of oliver flounder hepatocytes. Spent media were analyzed on day 6 after E_{2} addition. Vertical bars represent the average (mean $\pm \mathrm{SE}$) of three experiments. ${ }^{*} P<$ 0.01 for E_{2}-free culture.

가하지 않은 대조군과 동일한 수치를 나타내었다. 3 일간 사전배양올 한 배양 간세포에서는 VTG의 합성이 이루

Fig. 4. SDS-PAGE showing the effect of various concentrations of on the induction VTG (arrow) in the oliver flounder hepatocyte cultures. Spent media were analyzed on day 0 (upper) and day 6 (lower) after 2, 4-D addition. M: molecular weight (MW) marker. CBB stain.

어지지 않는 것으로 나타났다(Fig. 4). 여기에 E_{2} 를 첨가 함에 따라 VTG의 합성이 이루어져 175 kDa 부근에 강 한 염색성을 가진 VTGG의 밴드가 나타났다. $2,4-\mathrm{D}$ 의 첨 가에 있어서는 $10^{-8} \mathrm{M}$ 의 저농도의 첨가에 있어서는 VTG의 합성이 나타넜으나, 그 보다 높은 $10^{-7}, 10^{-6}$ 및 $10^{-5} \mathrm{M}$ 의 농도에서는 오히려 VTG의 합성은 전혀 나타 나지 않았다. 그리고, $\mathrm{E}_{2} 10^{-6} \mathrm{M}$ 과 $2,4-\mathrm{D} 10^{-6} \mathrm{M}$ 을 동시 에 첨가한 실험군에서는 VTG의 합성이 강하게 나타났 다. 총 단백질에 대한 VTG의 합성양은 E_{2} 의 첨가에 의 해 $30.1 \pm 2.3 \%$ 의 수치를 나타내었으며, $2,4-\mathrm{D} 10^{-8} \mathrm{M}$ 의 첨가에 의해서는 $18.4 \pm 1.8 \%$ 의 수치를 나타내었다(Fig. $5)$. 그리고, E_{2} 와 동시에 $10^{-6} \mathrm{M}$ 의 $2,4-\mathrm{D}$ 를 첨가한 실험 군에서는 VTG의 합성양이 $30.2 \pm 2.3 \%$ 를 나타내어 E_{2} 를 단독으로 첨가한 실험군과 유의한 차이를 나타내지

Fig. 5. Effects of tamoxifen $\left(10^{-6} \mathrm{M}\right)$ on the production of VTG in the oliver flounder hepatocyte cultures stimulated by E_{2} and 2, 4-D for 6 days. Hepatocytes were primed for VTG production by incubating with E_{2} or/and 2,4-D for 6 days and then tamoxifen was added. The activity of VTG production was estimated for the relative optical density of VTG to total proteins after SDS-PAGE. Vertical bars represent the average (mean $\pm \mathrm{SE}$) of three experiments. $* P<0.01$.

않았다. Tamoxifen은 E_{2} 수용체 (ER)와의 결합에 대해 길항작용을 가진 길항제로 알려져 있다(Jobling and Sumpter, 1993). 본 연구에서는 E_{2} 또는 $2,4-\mathrm{D}$ 의 첨가 에 의해 합성된 VTG 는 tamoxifen의 첨가에 의해서 VTG 합성이 유의하게 역제되었다 $(P<0.01)$ (Fig. 5).

고 찰

간세포의 배양은 포유류의 독성시험에 널리 사용되고 있으며 (Inoue et al., 1989; Guyomard et al., 1990), 난생 동물인 조류, 양서류 둥에서도 스테로이드 호르몬의 작용 에 관한 연구룔 위해 폭넓게 이용되고 있다(Kawahara et al., 1987; Liang and Jost, 1991). 어류에 있어서의 간 세포 배양은 뱀장어, 무지개송어률 대상으로 이루어져 왔으나(Peyon et al., 1993; 여, 1998), 포유류의 세포배양 에 비해 세포의 부착 및 성장에 있어 미흡한 점이 많다. 특히, 본 연구에서 사용된 넙치와 같은 해산어류를 대상 으로 한 간세포 배양에 관한 연구는 전무한 상태이다. 어류는 그 중에 따라 서식 환경, 특히 적정수온이 다름 으로 인해 간세포배양에 이융되는 콜라겐 가수분해효소 (collagenase)의 작용과 세포에 적합한 온도 설정에 관 한 면밀한 사전연구가 이루어져야 한다. 본 연구의 $15 \sim$ $30^{\circ} \mathrm{C}$ 배양 범위에서 간세포를 배양한 결과, $27.5^{\circ} \mathrm{C}$ 의 배

양온도에서 간세포가 가장 높은 생존율을 나타내었고, 배양 간세포의 생존율은 $17.5^{\circ} \mathrm{C}$ 이하에서 급격히 낮아 지는 경향을 나타내었다. 일반적으로 넙치의 산란기 수 온은 $11 \sim 23^{\circ} \mathrm{C}$ 로 알려져 있으므로 (국립수산진훙원, 1987), VTG의 합성을 위한 간세포 배양 적정온도는 $27.5^{\circ} \mathrm{C}$ 에서의 생존율과 유의한 차이를 나타내지 않은 $20 \sim 25^{\circ} \mathrm{C}$ 의 범위가 적합한 것으로 여겨진다.

최근 생물의 내분비계를 교란하여 종의 번식에 악영 향을 미치는 것으로 알려진 환경호르몬의 연구는 주로 VTG률 biomarker로써 사용하여 진행되고 있다(Sumputer and Jobling, 1995; Hashimoto et al., 2000). 그러 나, 그 대부분이 in vivo의 연구로는 실제적인 작용기전 을 파악하거나, 환경호르몬의 생체내 작용농도를 기준으 로 설정하기에는 어려운 점이 많다. 이에 본 연구에서는 넙치의 간세포률 배양하여 제초제에 포함되어 있는 2 , $4-\mathrm{D}$ 에 의한 VTG의 합성 및 분비에 대한 영향을 관찰 하였다. $2,4-\mathrm{D}$ 는 세포막에 손상을 가하여 세포로부터 아미노산의 대사산물을 방출시키는 것으로 보고되고 있 다(Cheney and Swinehart, 1984). 따라서 본 연구에서도 간세포의 배양에 있어 $2,4-\mathrm{D}$ 에 의한 세포막 손상을 통 한 간세포의 생존율이 낮아질 것으로 예상을 하였으나, $2,4-\mathrm{D} 10^{-8} \sim 10^{-5} \mathrm{M}$ 의 농도에서는 E_{2} 첨가구와 생존율 에 있어서 유의한 차이를 나타내지 않았다. 그러나, 배양 기간이 12 일인 점을 감안할 때, $2,4-\mathrm{D}$ 에 대한 세포막의 손상 등에 대해서는 조직학적인 연구가 보충되어져야 할 것으로 여겨진다.
$2,4-\mathrm{D}$ 의 내분비계 작용은 저농도 또는 단기간의 노 출에는 E_{2} 와 유사한 작용을 나타내지만, 고농도에서는 오히려 그 작용이 억제되는 것으로 보고되고 있다 (Cheney et al., 1997). 본 연구에서 VTG는 $10^{-6} \mathrm{M}$ 농도 의 E_{2} 를 첨가한 실험군에 비해 유의하제 낮은 수치이긴 하였으나, $10^{-8} \mathrm{M}$ 의 $2,4-\mathrm{D}$ 를 단독으로 첨가한 실험군에 서 합성이 이루어졌다. 그러나, 고농도에서는 VTG의 합 성은 거의 이루어지지 않았으며, 이것은 \mathbf{E}_{2} 를 첨가하지 않은 대조군과 유의한 차이률 나타내지 않았다. 그리고 ER과의 결합을 저해하는 것으로 알려진 tamoxifen의 첨가에 의해 VTG의 합성이 저해되는 것으로 나타나, 2 , $4-\mathrm{D}$ 는 E_{2} 와 유사한 작용을 통해 VTG 합성을 유도하는 것으로 추정된다. 그러나, $2,4-\mathrm{D}$ 의 VTG 합성 작용이 E_{2} 와 동일한 작용에 의한 것일 경우, E_{2} 와 $2,4-\mathrm{D}$ 의 동시 투여는 VTG합성을 저해할 것으로 추측되어졌으나, VTG합성의 억제효과는 나타나지 않았다. 이러한 점은 $2,4-\mathrm{D}$ 의 작융이 VTG 의 합성올 유도하기는 하지만, E_{2} 의 작용과는 다소 다를 것으로 여겨진다.

간세포에서의 ER 은 $\mathrm{ER} \alpha$ 및 $\mathrm{ER} \beta$ 가 각각 존재하며,

일반적으로, E_{2} 의 경우에는 $\mathrm{ER} \alpha$ 및 $\mathrm{ER} \beta$ 를 균둥한 비율 로 결합하는 것으로 알려져 있다(Ikeuchi et al., 1999; Xia et al., 1999). 그러나, nonylphenol은 ER α 에 비해 $\mathrm{ER} \beta$ 에 많은 결합을 하며 (Kuiper et al., 1998), E_{2} 가 ER 과의 결합을 저해한다고 보고되고 있다(Lutz and Kloas, 1999). $2,4-\mathrm{D}$ 의 경우는 어떠한 ER 과 어떠한 비율로 결 합을 하는가에 대해서는 아직 불명확하다. 본 연구에서 $2,4-\mathrm{D}$ 의 $10^{-8} \mathrm{M}$ 의 단독 농도에서의 VTG합성 분비와 E_{2} 와 $2,4-\mathrm{D}$ 의 동시 첨가에서도 VTG 합성 억제효과가 나타나지 않는 것은, 이러한 수용체와의 결합양식의 차 이에 의해 E_{2} 의 작용과는 다소 다른 작용경로를 통한 기전이 존재하는 것으로 추정되어진다.

한편, $2,4-\mathrm{D}$ 는 다이옥신을 불순물로 포합하고 있는 것으로 알려져 있다(田中, 1998). 다이옥신은 방향족 탄 화수소 수용체에 결합하여 내분비계에 영향을 미치며 (Hankinson, 1995), cytochrome P450을 유도하는 것으 로 여겨지고 있다(Heimler et al., 1998). 따라서 2,4-D 에 의한 VTG의 합성은 ER과는 별도의 세포내 호소작 용을 경유한 합성 및 분비 유도의 가능성도 내포하고 있는 것으로 여겨진다. 이러한 부분의 해명욜 위해 ER, VTG 유전자 및 cytochrome P450에 대한 자세한 연구가 이루어져야 할 것이다.
이상의 결과에서와 같이, 넙치의 배양 간세포에 있어 서의 VTG 합성은 E_{2} 를 $10^{-6} \mathrm{M}$ 농도로 처리하였을 때 최 대치를 나타낸다는 것이 밝혀졌다. 그리고, $2,4-\mathrm{D}$ 의 첨 가에 있어서는 저농도인 $10^{-8} \mathrm{M}$ 에서 E_{2} 와 유사한 작용 을 가진다는 것이 밝혀졌다. 그러나, 고농도에서는 VTG 의 합성이 전혀 이루어지지 않는 점 등을 고려할 때, 2 , $4-\mathrm{D}$ 와 ER 과의 관련에 대한 보다 세부적인 연구가 필 요한 것으로 여겨진다.

적 요

Estradiol-17ß (E_{2})와 2,4-dichlorophenoxy acetic acid $(2,4-D)$ 가 난황 전구물질의 합성에 미치는 영향을 넙치 Paralichthys olivaceus 간세포의 초대 배양을 통하여 조 사하였다. 배양간세포의 생존율은 배양온도 $27^{\circ} \mathrm{C}$ 에서 가장 높게 나타넜으며, $15^{\circ} \mathrm{C}$ 에서는 생존율이 금격히 감 소하여 약 50% 의 생존율을 나타내었다. E_{2} 에 의한 VTG 의 합성은 $10^{-6} \mathrm{M}$ 에서 최대치를 나타내었다. $2,4-\mathrm{D} 10^{-7}$ $\sim 10^{-5} \mathrm{M}$ 의 첨가에 의해 VTG의 합성은 이루어지지 않 았다. 그러나, 저농도인 $10^{-8} \mathrm{M}$ 에서는 VTG 의 합성이 중 가하였다. E_{2} 및 $2,4-\mathrm{D}$ 에 의해 합성된 VTG는 $10^{-6} \mathrm{M}$ tamoxifen의 첨가에 의해 유의하게 억제되었다 $(P<$ 0.01). 본 연구 결과에서 E_{2} 와 $2,4-\mathrm{D}$ 의 동시 첨가는

VTG의 합성을 억제하지 않았다. 이러한 결과는 $2,4-\mathrm{D}$ 의 작용이 E_{2} 와 유사한 작용을 가지지만, VTG의 합성에 있어서 E_{2} 수용체에의 작용 양식은 서로 다른 것으로 추정된다.

사 사

본 연구는 1999년 5월~2000년 4월에 실시된 제주대 학교 해양연구소 발전기금 연구과제로 수행되었음.

인 용 문 헌

Charles, J.M., H.C. Cunny, R.D. Wilson and J.S. Bus. 1996. Comparative subchronic studies in 2,4-dichlorophenoxy acetic acid, amine, and ester in rats. Fund. Appl. Toxicol., $33: 161 \sim 165$.
Cheney, M.A. and J.H. Swinehart. 1984. The effects of acid waters on the loss of divalent cations and primary amines from membranes. Comp. Biochem. Physiol., 77A: 327~330.

Cheney, M.A., R. Fiorillo and R.S. Criddle. 1997. Herbicide and estrogen effects on the metabolic activity of Rlliptio complanata measured by calorespirometry. Comp. Biochem. Physiol., 118C : 159~164.
Guyomard, C., C. Chesne, B. Meunier, A. Fautrel, C. Clerc, F. Morel, M. Rissel, J.P. Campoin and A. Guillouzo. 1990. Primary culture of adult rat hepatocytes after 48-hour preservation of the liver with cold UW solution. Hepatology, $12: 1329 \sim 1336$
Hankinson, O. 1995. The aryl hydrocarbon receptor complex. Annu. Rev. Pharmacol. Toxicol., 35 : 307~340.
Hashimoto, S., H. Bessho, A. Hara, M. Nakamura, T. Iguchi and K. Fujita. 2000. Elevated serum vitellogenin levels and gonadal abnormalities in wild male flounder (Pleuronectes yokohamae) from Tokyo bay, Japan. Mar. Environ. Res., $49: 37 \sim 53$.
Heimler, I., R.G. Rawlins, H. Owen and R.J. Hutz. 1998. Dioxin perturbs, in a dose- and time-dependent fashion, steroid secretion, and induces apoptosis of human luteinized granulosa cells. Endocrinology, 139 : 4373~ 4379.

Hori, S.H., T. Kodama and K. Tanahashi. 1979. Induction of vitellogenin synthesis in goldfish by massive doses of androgens. Gen. Comp. Endocrinol., 37 : 306~320.
Ikeuchi, T., T. Todo, T. Kobayashi and Y. Nagahama. 1999. cDNA cloning of a novel androgen receptor subtype. J. Biol. Chem., 274 : 25205~25209.
Inoue, C., H. Yamamoto, T. Nakamura, A. Ichihara and H. Okamoto. 1989. Nicotinamide prolongs survival of pri-
mary cultured hepatocytes without involving loss of hepatocyte－specific functions．J．Biol．Chem． 264 ： 4747 ~ 4750 ．
Jobling，S．and J．Sumpter．1993．Detergent components in sewage effluent are wealky oestrogenic to fish：an in vitro study rainbow trout（Oncorhynchus mykiss）hepa－ tocytes．Aquat．Toxicol．， $27: 361 \sim 372$.
Joseph，I．and V．S．K．Chennubhotla．1999．Gibberellic acid and $2,4-\mathrm{D}$ as regulators in laboratory culture of sea－ weeds．Indian J．Mar．Sci．， $28: 66 \sim 69$.
Kawahara，A．，S．Kohara，Y．Sugimoto and M．Amano． 1987．A chage of the hepatocyte population is respon－ sible for the progressive increase of vitellogenin synthe－ tic capacity at and after metamorphosis of Xenopus laevis．Dev．Biol．， 122 ：139～145．
Kuiper，G．J．M．，J．G．Lemmen，B．Carlsson，J．C．Corton， S．H．Safe，T．Van Der Saag，B．Van Der Burg and J．A． Gustafsson．1998．Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β ．Endocri－ nology， $139: 4252 \sim 4263$ ．
Kwon，H．C．and Y．Mugiya．1994．Involvement of growth hormone and prolactin in the induction of vitellogenin synthesis in primary hepatocyte culture in the eel， Anguilla japonica．Gen．Comp．Endocrinol．， 93 ：51～60．
Laemmli，U．K．1970．Cleavage of structural proteins dur－ ing assembly of the head of bateriophage T_{4} ．Nature， 227：680～685．
Le Menn，F．，H．Rochefort and M．Garcia．1980．Effect of androgen mediated by estrogen receptor of fish liver： Vitellogenin accumulation．Steriods， $35: 315 \sim 328$ ．
Liang，H．and J．P．Jost．1991．An estrogen－dependent polysomal protein binds to the 5^{\prime} untranslated region of the chicken vitellogenin mRNA．Nucleic Acids Res．， 19 ：2289～2294．
Lutz，I．and W．Kloas．1999．Amphibians as a model to
study endocrine disruptors：1．Environmental pollution and estrogen receptor binding．Sci．Total Environ．， 225 ：49～57．
Mommsen，T．P．and P．J．Walsh．1988．Vitellogenesis and oocyte assembly．In：Hoar W．S．and Randall D．J．（eds．）， Fish Physiology．Vol．XIA，Academic Press，San Diego， pp． $347 \sim 406$ ．
Ng，T．B．and D．R．Ider．1983．Yolk formation and differen－ tiation in teleost fishes．In：Hoar W．S．，Randall D．J． and Donaldson E．M．（eds．），Fish Physiology．Vol．IX， Academic Press，San Diego，pp．379～404．
Peyon，P．，S．Baloche and E．B．Gerard．1993．Synthesis of vitellogenin by eel（Angulla angulla L．）hepatocytes in primary culture：Requirement of 17β－estradiol prim－ ing．Gen．Comp．Endocrinol．， 91 ：318～329．
Short，P．and T．Colborn．1999．Pesticide use in the US and policy implications：A focus on herbicides．Toxicol．Ind． Health， $15: 240 \sim 275$.
Sumputer，J．P．and S．Jobling．1995．Vitellogenesis as a biomarker for estrogenic contamination of the aquatic enviroment．Eviron．Health Perspect．， $103: 173 \sim 178$.
Xia，Z．，R．Patino，W．L．Gale，A．G．Maule and L．D．Dens－ more．1999．Cloning，in vitro expression，and novel phylogenetic classification of a channel catfish estrogen receptor．Gen．Comp．Endocrinol．， $113: 360 \sim 368$ ．
Zhavoronkov，A．A．，L．N．Malysheva，S．N．Galimov，F．K． Kamilov and E．G．Davletov．1998．Morphofunctional description of white rat gonads exposed to the herbicide 2，4－D containing dioxin．Arkhiv－Patologii，60：51～53．
국립수산진홍원．1987．어류양식（넙치）．수산기술지 22．예문 사，부산， 64 pp ．
여인규．1998．무지개송어의 간세포 초대배양에 의한 Vitellogenin 합성 유도．한국양식학회지， $11: 557 \sim 564$ ．
田中勝．1998．環境ホルモン\＆ダイオキシン．化學同人，東京， pp． $130 \sim 141$ ．

