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SOME PROPERTIES OF MUTUAL INFORMATION
AND TYPICAL SET

YOUNG SOO LEE

Abstract
In this note we define typical set and differential entropy for continuous random variables.
Using Markov chain, we show that the various properties of the mutual information and
entropies (theorems 3.2 and 3.4 ) and show the properties of typical set in continuous random
variables( lemma 4.2 and theorem 4.3.)

1. Introduction.

The subjects of information theory and coding theory began in 1948 with a
famous paper by Claude Shannon, of Bell Labs, entitled A Mathematical Theory
of Communication.

Indeed, elementary information theory is a beautiful application of discrete
probability theory to the problem of encoding for efficiency and elementary coding
theory is a beautiful application of alphabet and combinatorics to the problem of
error detection and correction. The study of information theory consists of three
parts :

one is related to cipher theory and signal transition and the rest is concerned
with communication theory. (( 1 1, [ 4] [ 10D
The concepts of information theory is too wide to define to constant one way. But
there
are a few key ideas and techniques that when mastered, make the subject appear
simple and provide great inituition on new questions. Quantities like entropy and
mutual information arise as the answers to fundamental questions. The concept
of entropy in information theory is closely connected with the concept of entropy
in statistical mechanics.

The purpose of this paper is to find some properties of information theory
with various entropies.

Many properties of entropies and typical set is found in discrete random variables,
but is not proved in continuous random variables. We wish to do this.

In section 2, we describe some important terminologies and notations and basic
definitions which are needed to prove theorem3.2, theorem 3.4 and lemm4.2, theorem4.3
in sections 3 and 4.

In section 3, we discuss some kinds of information inequality and
thermodynamics and prove theorem3.2 and theorem3.4 using the propositions 3.1
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and 3.3.

In section 4, we construct the typical sequences and typical set and discuss
the differential entropy for continuous random variables. Here we prove lemma4.2
and theorem4.3 using proposition4.1.

2. Terminologies and Basic definitions.

Let X be a discrete random variable with alphabet = and probability mass
function p(x). Then the entropy H(X) of a discrete random variable X is defined
by H(X)=- 2, p(x)logs(x) .([10])

We often denote H(X) as H(p) and entropy is expressed in bits.
The differential entropy #(X) of a continuous random variable X with a probability

density function fx) is defined as #(X)=— fs A x)log Ax)dx, where S is the support
set of the random variable.that is, S={x Ax)>0}.

We often denote #(f) rather than #(X)
If X, Yhave a joint probability density function Ax, y), we can define the conditional

differential entropy #(X|Y) as WX| Y)=— f Ax, Mlog Ax | y)dxdy

Since in general Ax| ) =Ax | Ay),
KX YV)=nX,YV)—nY)
The relative entropy (or Kullback Leibler distance ) D(f!l g between two densities

fand g is defined by D(fll g) = f ﬂogé
The mutual information KX Y) between two random variables X and Y with joint
probability density function Ax,y) is defined as A X:Y)= f Ax, ) log _f"(ﬁxi)cjf(l)y)_ dxdy.

The properties of D(fllg) and (X Y) are the same as in the discrete case.
The following properties are well-known({ 2 1,L 6 1L 10 D)

(i) HX, N=HX)+HY|X) (chain rule)

(1) IXY)=HX)—HX|Y (mutual information and entropies)

(i) H(X,, X;, -, X,)= ng(Xi | X2y, . X0) (Chain rule for entropy)

(v) (X;, X5, -, X,, V= ZII(X#YI Xic1, Xica, . Xy)

(Chain rule for information)
A function A x) is said to be convex over an interval (a, b) if for every x;, x,€(a, b)
and 0<x<1], ,
If —Ax) is convex, then Ax) is said to be concave.
A function is convex if it always lies below any chord and is concave if it alway
lies above any chord. ‘
If the function £ has a second derivative f” (x) which is non—negative everywhere,
then the function is convex.
proposition 2.1 Let f be a convex function and X be a random variable, then
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EAX)2AEX)
Moreover, if fis strictly convex, then equality implies that X = EX with probability
1. ie., X is a constant. This is called Jensen'’s inequality.([101,[11]).

3. Mutual information inequality.

Let a;, ay, -, a, and b,, by, -, b, be non—negative numbers. Then by the
concavity of logarithm

ia log 2 a;)log Z

a,
b, constant.
By convention we use 0log0=0, alog% = if @ 0 and OIOg% =

Indeed,
Let e, 0 and bp 0. Take the function A =+¢logt. Then by Jensen’s inequality,

we have

with equality iff

2aift) = A2 a;t;)
for a,=0, Za,: 1. Since f(t) is strictly convex, setting a; = b;/ 121 b; and

t,= a;/b; we obtain

Tty sy, > Zyy sy
which is the log sum inequality ¥
Proposition 3.1. we can show the following two inequality.
1) Let p(x), g(x), x=X be two probability mass functions. Then D(pll ¢)=0 with
equality if and only if p(x)=gq(x) for all x. (Information inequality)
2) For any two random variables x, y, I(xy)>0 with equality if and only if x
and y are independent. ( Non-negative of mutual information).
proof. 1) Let A={x:p(x) > 0} be the support set of p(x). Then
—D(pll @)=~ ;:.Ai)(x) log ‘gg}‘;- 2 p(x) log —d—%‘ < log ngp(x)—g-((f)l
=log 2 ¢(x)=log1=0,

Hence we have D(pliq)=0 if and only if p(x)=q(x) for all =x.
we also can show this by the log sum inequality.
1

Do @) = Zp()tog B > (Sp(0))log L&A — 1104 =0,

with equality if and only if p(x)/q¢(x)=c¥

(2) Similarly, I(xy)=D(p(x,v) | p(x)p(»))= 0 , with equality if and only if
p(x, y) = p(x)p(),

ie, x and y are independent.

Let x—y —z be Markov chain. Then I(xy)=Ix;z).

Indeed, by the chain rule
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Kxy,2)=Kxy)+Kxylz)=I(x;y)+I(x%z|y)

Since x and z are conditionally independent for given y, we have I(xz|y)=0.
We have I(x3v)=I(xz) because of I(x;y]|2z2)=0.

We equality if and only if I(xly | 2) =0, 1.e, x —z—y forms a Markov chain.
Theorem 3.2. Let x — y— 2z be Markov chain. Then

D Iy;z) =2I(x;z). 2) I x5y 12)<I(xy).
proof. 1) we can expand mutual information in two different ways.
By the chain rule, Since if X —»y—z, then z2— y —x

I1z,y,x)=1(z,y)+1(z,;x]y)
=1 @z:;x)+1(z;y]x%)
Since x and z are conditionally independent given y, we have I( z ; x | y)=0.
SinceI (z; x| y)=0, wehave I (z:y) =I(z; x).
Therefore I (y ;z) = Ix;z)%
2) We can prove similar to 1).
By the chain rule,
Ix;y,2=1(x;2z)+1(x;y |2)=1I(x;y) + I(x;z]| ).
Sincel (x;z |¥)=0 by Markovity, I(x;2z) =90.
Hence we have
I(x;y 12)y<I(x;y).
The second law of thermodynamics states that the relative entropy always decreases
and the entropy of an isolated system is non-decreasing. ([ 41, {81, [ 10D
Let ,and u, be true probability distributions on the state of a Markov chain at
time n and let #,.; and #,.; be the corresponding distributions at time n+1.
Let the corresponding mass functions be denoted by p and q.
Thus p(%,, Xus1) = D(x,) K Xps1 | 2,) and g(x,, %p11) = @(%,) %01 | x4),
where #{ - | +) is the probability transition function for the Markov chain. Then
by the chain rule for relative entropy, Wwe have two expansions:
D((%n, Zng1) 1 a(%0,%0-1))
=D(p(x,) | ¢(x, )+ DD (Xps1 | 2,) 1 a(xps1 | %))
= D((xp1) | @(xps1)) + D02y | %n41) 1%y | %0s1)).
Since both p and ¢ are derived from the Markov chain, the conditional probability
mass functions p(x,+; | %,) and ¢(x,+; | x,) are equal to #(x,4; | x,) and hence
D(p(xp—1 | %) || @y | x041)) = 0,
Now using the non—negativity of D(p(x, | £ps1) I a(% nr1) ), Hence
we have D(p(x,) | a(x,) = D(p(xp41) | @(2041))
or
D(,U,, " /-"n) = D(,U,H-] " /"n-H) )
Here u, is any distribution on the states at time n. if we let x, be any stationary
distribution g, then u,_; is the same stationary distribution . Hence
D, ) 1#)=D(upsr 22),
D(u, | #) between a distribution g, on the states at time n and a stationary

distribution x decreases with n. If the stationary distribution is the uniform
distribution, then we can express the relative entropy as
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Dlg,ll#) =1log | X | - H(x,).
In this case the monotonic decrease in the relative entropy implies a monotonic
increase
in entropy. This is the explanation that ties in most closely with statistical
thermodynamics #
Let | X | be the number of elements in the range of x. Then H(x) <log | X |,
with equality if and only if x has a uniform distribution over X.
Let u(x) be the uniform probability mass function over x. Then

_ x) _ -
D || #) =2 #(x) log () = log | X | H(x).

Hence by the non-negativity of relative entropy,
0 <D(plu)=1log|X | - Hx) ¥
Proposition 3.3. The conditional entropy H( x,, | x; ) increases with n for a stationary
Markov process .
proof. If the Markov process is stationary, then H( x,) is constant.

So the entropy is non-increasing. we shall prove to two different ways.
First, By the properties of entropy, we have

H (x,1 %)= H(x, | %, %3) (conditioning reduces entropy )
= H''(x,| x5) ( by Markovity )
=H (x,-1] %) ( by stationarity )

Thus H (=x,!| x;) increases with n.

Alternatively, by an application of the data processing inequality to the markov
chain

X] Xy X ,, we have
I( X1 x,,_l) = I(xl ;x,,).
By the mutual informations in terms of entropies ,
H(x,-1)— H(x,—1 | x;)=H(x,)—H(x, %)
By stationarity,
H (x,,_l) =H(x,, )
Hence we have
H (xn—l l xl) SH(x,, le)#
Theorem 34. Let xy — x,-; —x, be Markov chain with n,
H (x, |2 ) is non-decreasing.
proof. If xy—x,-,—x, is Markov chain, then x, — x,_; — x, is a markov chain.
That is,
X0 <> X,—1 < x, 1S a Markov chain. Then
I (x| x,—1) = I(xy,%,) by markovity.
H (x) —H (xy] x,—;) by mutual information.

So " H (xplx,)=H(xy | x,-1).
Alternativly , the sequence xy < x,_; < x, is markov chain.

H(xg| x,) = H(xy | %pep, %) (conditioning reduces entropy ).
By markov chain, :
Hence H (x| x,-1, x,) = H(xy | x,—;).

H( x()l xn) =H(X() l x,,_l).
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This 1s an entropy of initial conditions ¥

4. Typical sets in continuous random variables.

The asymptotic equipartition property(AEP) shows which most sequence are
typical in that they have a sampled entropy close to H.

Let X;, X,, -, X, be independent identically distributed (ii.d) random
variables and p(X;, X,, -, X,) be the probability of the sequence
Xl’ X29 .“’ Xn- A

1 1 ;
Then the AEP states that . 1og X, X, -, X,) s close to the entropy

H.

This set has approximately 2™ typical sequence of length n and the probability
of each set is approximately 2.

We can therefore represent the typical sequences of length n using approximately
nH( =)

This enables us to divide the set of all sequences into two sets, the typical set,
where the sample entropy is close to the true entropy, and the non-typical set,
which contains the other sequences.

We can show that the typical set has a probability close to 1.

Let X be a random variable with cumulative distribution function F(x) =P, (X<7).

Let Ax)=F  (x) when the derirative is defined.
The set where Ax)>0 is called the support set of X.

Proposition 4.1 Let X;, X,, -, X, be a sequence of random variable drawn
1i.d. according to the density Ax). Then
—%logf(Xl, Xy, -, X,)=h(X) in probability.

Proof. Functions of independent random variables are also independent random
variables. Thus,since the x; are iid, so are log A X;).
By the weak law of lange numbers,

~Lioesx,, X, -, X ==L TloeAX) = WX
For >0 and any n, the set A{™ with respect to f(x) is called the typical set as

follows.
Aé”’={(x1 L Xy, v, Ky)ES™ ‘%logf(xh Xys s "”)_h(x)lse}

where Axy, x3, =, x,) =11 Ax;)
We define the volume of a set A=R"denoted by as follows.
VollA) = |  dydvy-d,

We must remark that the analog of the cardinality of the typical set for the di§crete
random variable s is the volume of the typical set in the continuous random variables.

Then by the definition of the typical set AL”, We can show that if
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(xl » X2, 77, xn)EAe(n)’ then

WX)—e< ——}1— log Ax1, %32, =, 2 )<KX)+ e

, where n(X) denotes the differential entropy .
As a consequence of the asymptotic equipartitiqn property, we can show that the

set A ﬁ”) has the following properties:

Lemma 4.2 ‘
1. P,(A”)>1—¢ for n sufficiently large

2. Vol(A{M)<2™MO+e for ]l n

3. VollA)<(1—€)2"¥®~9 for n sufficiently large

Proof 1. By the definition of the AEP and typical set A, taking the log with
base 2 to both sides, — n(h(x)+e)<logfAx;, %2, =, )< — n(h(x) — &)
Therefore A(x)—e< —% log of(x1, %2, =, x,)<h(x) +e

since the probability of the event (x;, %, =, x,)€A™ tends to 1 as n—oo.
For any 6> 0, there exist an #, such that for all n=#,,

Pf| =L togAx, 5, o, )~ W< 1-0
PI‘OOf 2 lzfsnf(xli xZ! - xn)dxldxz--.dxn Z‘L?)ﬂxl’ xz, e xn)dxldxz-..dxn

> 9 —n(h(x)-%—s)dxldxzmdxn =9 —n(h(x)+e)L dy diy -, =2 —n(h(x)+s)Vol(A§n))

AE”)
hence Vol A/ <2 "MA+e for all n.

Proof 3. Finally, for sufficiently lange n, P{A"} 1—e.
So

(n)
&

1—e< fA(n)f(xl’ X9, v, x”)dxldxz...dx” SL(,)Z "n(h(x)—E)dxldxz-..dxn

-9 -n(h(x)—e)fA dicydicy - de, =2 T*ED=Ypu 47

(n)
€

is establishing property 3.
We argue further that the volume of the typical set is at least this lange
Hence we have

(1 _ 8)2 n(h(x)—e)s VOl(Aé”) <2 n(h(x) +€)
which completes the proof of the properties of A®
We divide all sequence in " into two sets:
One is the typical set A and the other is complement (A )°. We order all
elements in each set according to some order.
Then we can reprensent each sequence of A ™ by giving the index of the sequence
in the set.
Since there exists <2 "**9 sequence in A the indexing sequence 7, more than
n(h+e  +1 bits.
we prefix all these sequence by a 0, giving a total length of <un(k+e)+2 fits



140 YOUNG SOO LEE

to represent each sequehce in A

Similarly, we can index each sequencenotin A e(”) by using not more than #zlog|=|—1
bits.

prefixing these indices by 1. we have a code for all the sequence in ="U
Note that the typical sequence have short description of length = »h.

Inceed, let the notation x” to denote a sequence x;, x3, -, x, and Xx") be the
length of the code word corresponding to x”".

If nis sufficiently large so that f{Aé”’ }=1—¢, then the expected length of the codeword
is

Bz =[ A = [ K+ [ A

= f,re,qgﬂf(xn)[ n(h+e)+2]+ fxueA?)rf(x”)( nlog = | +2)

=AA n(h+e)+21+ AAP N niogl =] +2) <n(h+e) + en(loglz])+2
= n(h+e')

where ¢'=ce+elog| |+ 2

n

From the definition of A", the typical set A" is a small set that contains most
of probability.

But it is not clear whether it is the smallest such set. Now we shall show that
A" has essentially the same number of the elements as the smallest set, to first
order in the exponent.

we define B{® as follows:

Let B{"C=" be any set with AB§{”}>1-46 for each n=1,2, -

We argue that B{” must have significant intersetion with Ae(”) and therefore must
have about as many elements.

Theorem 4.3 The typical set A!™ is the smallest volume set with probability
AB§”}=1—c¢ to first order in the exponent. This theorem shows that the volume

of the smallest set that contains most of the probability is approximately 27

1
This is an n-dimensional volume, so the corresponding side length is (2™) " =2*
Proof. Letany twosets A,Bas AA)>1—¢;and AB)>1—¢,. Since Xy, X5, =+, X,

are iid with probability density function Ax), if we fix e<%—,

AANB)=AA)-AB) ) (1—&)1l—g) =1—¢ —&.
Accordingly, AAPNBM =AAP) - ABM=2(1—a)(1—8)=1~e—0 by

proposition 4.1
Next by the chain rule of inequality,

l—e—o <f(A§n)mB§n))= f f(x”)s z—n(h—e)

As(n)nB;n) Aﬁ”)nBén)
Vol AP (MB§™)2 ™" *~9< Vol B§P}2 ~"*~9
Vol B{"}2(1— e~ 829,
Taking the logarithm with have 2 to both sides,
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log , Vol{ B§"} 2 log 5(1 —e— &) +n(h+ &)
L tog , Vol B§)> L 1og o(1— 6= &) +(h—¢)
For n sufficiently large, we obtain
L tog Vo B{)> h— &'
Let us define the notation a=b& as follows.
N Ll 4n _
amc, 08 T

Then we obtain
Vol(B{”)=Vol(A{™)=2™
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