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THE EXISTENCE THEOREM OF ORTHOGONAL

MATRICES WITH p NONZERO ENTRIES

Gi-Sang Cheon, Sang-Gu Lee* and Seok-Zun Song

Abstract. It was shown that if Q is a fully indecomposable n � n orthogonal matrix then Q

has at least 4n � 4 nonzero entries in 1993. In this paper, we show that for each integer p with

4n � 4 � p � n2, there exist a fully indecomposable n � n orthogonal matrix with exactly p

nonzero entries. Furthermore, we obtain a method of construction of a fully indecomposable n� n

orthogonal matrix which has exactly 4n � 4 nonzero entries. This is a part of the study in sparse

matrices.

1. Introduction

By a pattern we simply mean the arrangement of zero and nonzero (denoted *) entries in

a matrix. An n � n pattern A is called orthogonal if there is an orthogonal matrix A whose

pattern is A. An n� n matrix A is fully indecomposable, if the rows and columns of A can not

be permuted to obtain a matrix of the form

�
A11 O

A21 A22

�

where A11 and A22 are square and nonempty. Let #(A) denote the number of nonzero entries

in the matrix (or pattern) A. In [BBS], it was shown that if Q is a fully indecomposable n� n

orthogonal matrix then #(Q) � 4n � 4. Thus it is clear that if Q is a fully indecomposable

n� n orthogonal matrix then

4n� 4 � #(Q) � n
2
:

Equivalently, if Q is a fully indecomposable n� n orthogonal matrix then the number of zeros

in Q is between 0 and (n � 2)2. In [CJLP], it was studied the possible numbers of zeros in an

orthogonal matrix.

In this paper, we show that for each integer p with 4n� 4 � p � n
2, there exist a fully inde-

composable n�n orthogonal matrix with exactly p nonzero entries. We introduce a constructive

approch for such matrices.

2. Orthogonal pattern by symbolic Gram-Schmidt procedure
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We say that an n�n matrix A (or pattern A) satis�es the Hall property if every k columns,

1 � k � n, collectively have nonzero entries in at least k rows. It is clear that there are full

rank matrices with pattern A if and only if A satis�es the Hall property. Note that every

lower triangular pattern such that its each main diagonal entry is nonzero satis�es the Hall

property. The Gram-Schmidt orthonormalization process can be used to construct the matrix

Q of the QR factorization of a matrix A. In [HJOD], it was given how to adapt the symbolic

Gram-Schmidt procedure to determine Q for a pattern A under the assumption that A has the

Hall property.

For a k � k pattern L = [lij ] de�ned by

lij =

8><
>:

0 if i < j;

� if i = j or j = i� 1;

0 or � otherwise;

we say that L is in echelon form whenever, for each i and j with i � j + 2, lij = 0 then

li+1 j = � � � = lkj = 0 and li1 = � � � = li j�1 = 0 for j � 2.

Clearly, each pattern L in echelon form is lower triangular such that its each main diagonal

entry is nonzero. For example, if m = 4 then each pattern in echelon form is following:

2
64
� 0 0 0

� � 0 0

� � � 0

� � � �

3
75 ;
2
64
� 0 0 0

� � 0 0

� � � 0

0 � � �

3
75 ;
2
64
� 0 0 0

� � 0 0

0 � � 0

0 � � �

3
75 ;
2
64
� 0 0 0

� � 0 0

� � � 0

0 0 � �

3
75 ; or

2
64
� 0 0 0

� � 0 0

0 � � 0

0 0 � �

3
75 :

Since each pattern L in echelon form satis�es Hall property, the next lemma follows from

[HJOD].

Lemma 2.1. Let L be an n� n pattern in echelon form. If Q is a pattern obtained from L by

symbolic Gram-Schmidt procedure, then Q is the same as L+U , and Q is a fully indecomposable

n� n orthogonal pattern, where U = [uij ] is the n� n pattern with

uij =

�
� if i < j;

0 otherwise;

and L+U is a pattern which has a zero in a given position only when both patterns are zero in

that position.

Note that if we take L as the n� n full lower triangular pattern and the n� n pattern2
666664

�

� � O

�
. . .

O
. . .

. . .

� �

3
777775

respectively, then by Lemma 2.1, we can get the n�n orthogonal full pattern Q with #(Q) = n
2

and the n�n orthogonal upper Hessenberg pattern Q with #(Q) = (n2+3n�2)=2, respectively,

where a matrix is full means all entries in the matrix are nonzero.
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Theorem 2.2. For each integer p with

n
2 + 3n� 2

2
� p � n

2
; (1)

there is a fully indecomposable n� n orthogonal matrix with exactly p nonzero entries.

Proof. Let L be an n�n pattern in echelon form, and let Q be a pattern obtained from L by

symbolic Gram-Schmidt procedure. Then by Lemma 2.1, Q is an n � n fully indecomposable

orthogonal pattern. Furthermore,

#(Q) = #(L) + #(U) = #(L) +
(n� 1)n

2
:

It is easy to show that for each integer q with 2n � 1 � q �
n(n+1)

2
, there is a pattern L in

echelon form with exactly q nonzero entries. Thus the theorem follows. �

Now, we only need to show that for each integer p with

4n� 4 � p �
n
2 + 3n� 2

2
� 1 (2)

there is a fully indecomposable n�n orthogonal matrix with exactly p nonzero entries. In order

to do this, we shall use the method of weaving and woven matrix which can be found in [Cr].

3. Orthogonal pattern by weaving

In [Cr], R. Craigen introduced a matrix method called weaving which is a method for building

new matrices from the given one. To every (0; 1)-matrixA = [aij ] having row sums r1; r2; : : : ; rm
and column sums c1; c2; : : : ; cn, we adopt the following notations.

s = s(i; j) := the number of nonzero positions in ith row of A up to jth column,

t = t(i; j) := the number of nonzero positions in jth column of A up to ith row.

Now let Ri (i = 1; 2; : : : ;m) have ri columns us, and Cj (j = 1; 2; : : : ; n) have cj rows v
T
t

using the indices s and t introduced above. We de�ne the \woven product" M = (R1 � � �Rm)~

(C1 � � �Cn) = [Mij ] block entrywise by

Mij =

�
usv

T
t if aij = 1;

0 otherwise:

The matrix A is called the lattice of the weaving, and the matrix M obtained by weaving

is called a woven matrix. Note that the resulting woven matrix depends on the lattice and

matrices Ri's, Cj 's.

Throughout we let M(A) denote a woven matrix obtained by weaving from a given lattice

A.
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Lemma 3.1. [C] Let A be an m�n lattice having row sums r1; r2; : : : ; rm and column sums

c1; c2; : : : ; cn whose bipartite graph is connected. If Ri (i = 1; 2; : : : ;m) is a fully indecomposable

ri � ri orthogonal matrix and Cj (j = 1; 2; : : : ; n) is a fully indecomposable cj � cj orthogonal

matrix, then the woven matrix M(A) is fully indecomposable orthogonal matrix of order #(A).

Now, we are ready to construct orthogonal matrices with p nonzero entries in (2) by weaving.

We are going to prove for odd n and for even n, respectively. Let us consider the odd

n = 2m� 1 case �rst.

For each k = 2; : : : ;m, we de�ne the m � m (0,1)-matrix Ak = [aij ] with row sums

r1; r2; : : : ; rm and column sums c1; c2; : : : ; cm by

aij =

8><
>:

1 if i = j; i = 1 and j = 2; : : : ; k;

j = i+ 1 for i = k; : : : ;m� 1;

0 otherwise:

That is,

k timesz }| {

Ak =

2
666666666664

1 1 � � � � � � 1 0 � � � 0

1 0
. . .

. . . O

1 0

1 1

O 1
. . .
. . . 1

1

3
777777777775
m�m

: (3)

Thus #(Ak) = 2m � 1 and r1 = k; r2 = � � � = rk�1 = 1; rk = � � � = rm�1 = 2; rm = 1; c1 =

1; c2 = � � � = cm = 2: Take

R1 =

2
4 � � � � �
...

...
...

� � � � �

3
5
k�k

;

R2 = � � � = Rk�1 = Rm = Cm = [ � ] ; (4)

Rk = � � � = Rm�1 = C2 = � � � = Cm =

�
� �

� �

�
: (5)

Then Ri's and Cj 's are orthogonal patterns from Lemma 2.1. And since Ak has a connected

bipartite graph, the resulting woven matrixM(Ak) is fully indecomposable (2m�1)� (2m�1)
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orthogonal pattern from Lemma 3.1, and has the following form:

2
6666666666666666666666666666666666666666666664

� � � � � � �

...
...

... � � �
...

...
...

...

� � � � � � �

� �

. . .

� �

� � � �

� � � �

� � � �

� � � �

. . .

� � � �

� � � �

� �

3
7777777777777777777777777777777777777777777775

:

Thus

#(M(Ak)) = k(2k � 1) + 2(k � 2) + 4(n� k � (k � 2)� 1) + 2

= 4n� 4 + (2k2 � 7k + 6):

Remark 3.2. If k = 2 in (3) then #(M(Ak)) = 4n � 4 and M(A2) is an unique orthogonal

pattern for an odd n as noted in [BBS].

Note that if we �x the matrices Ri's (i 6= 1) and Cj 's in (4) and (5) then #(M(Ak)) depends

on k � k orthogonal pattern R1. Now, �x Ri's (i 6= 1) and Cj 's in (4) and (5), and suppose R1

has a zero entry. Let xi denote the number of zero entries in the ith column of R1. Then it is

clear that

#(M(Ak)) = 4n� 4 + (2k2 � 7k + 6)� (x1 + 2x2 + 2x3 + � � �+ 2xk): (6)

Lemma 3.3. For an integer k � 3, let xi be an integer such that

0 � xi � k � i� 1; (i = 1; 2; : : : ; k � 2):

Then the linear system

x1 + 2x2 + � � �+ 2xk�2 = t with x1 � � � � � xk�2 (7)
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has a solution for each t = 0; 1; : : : ; k2 � 4k + 4.

Proof. Let x(t) = (x1; x2; : : : ; xk�2) be a solution of (7). Clearly, for each integer t with

0 � t � k � 2, x(t) = (t; 0; : : : ; 0) is a solution of (7). We suppose that t � (k � 2) + 1, and let

�(l) = k � 2 + 2

lX
i=3

(k � i) (l = 3; 4; : : : ; k � 1):

Then it is easily shown that

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

x(k � 2 + 2m� 1) = (k � 3;m; 0; : : : ; 0) and

x(k � 2 + 2m) = (k � 2;m; 0; : : : ; 0)

for each m = 1; 2; : : : ; k � 3 if (k � 2) + 1 � t � �(3);

x(�(3) + 2m� 1) = (k � 3; k � 3;m; 0; : : : ; 0) and

x(�(3) + 2m) = (k � 2; k � 3;m; 0; : : : ; 0)

for each m = 1; 2; : : : ; k � 4 if �(3) + 1 � t � �(4);

x(�(4) + 2m� 1) = (k � 3; k � 3; k � 4;m; 0; : : : ; 0) and

x(�(4) + 2m) = (k � 2; k � 3; k � 4;m; 0; : : : ; 0)

for each m = 1; 2; : : : ; k � 5 if �(4) + 1 � t � �(5);

� � �

x(�(k � 3) + 2m� 1) = (k � 3; k � 3; k � 4; : : : ; k � (k � 3);m; 0) and

x(�(k � 3) + 2m) = (k � 2; k � 3; k � 4; : : : ; k � (k � 3);m; 0)

for each m = 1; 2; : : : ; k � (k � 2) if �(k � 3) + 1 � t � �(k � 2);

x(�(k � 2) + 2m� 1) = (k � 3; k � 3; k � 4; : : : ; k � (k � 2);m) and

x(�(k � 2) + 2m) = (k � 2; k � 3; k � 4; : : : ; k � (k � 2);m)

for each m = 1; 2; : : : ; k � (k � 1) if �(k � 2) + 1 � t � �(k � 1) = k
2
� 4k + 4

is a solution of (7) for each t = (k � 2) + 1; : : : ; k2 � 4k + 4. Thus the proof is complete. �

>From Lemma 2.1, for each k � k pattern L in echelon form, we know that L+ U is a fully

indecomposable k � k orthogonal pattern. We take R1 as L + U . Then xk�1 = xk = 0. Thus

from Lemma 3.3, we may take a solution x(t) = (x1; x2; : : : ; xk�2; 0; 0) with the same values

x1; x2; : : : ; xk�2 as ones in the proof of Lemma 3.3 to the system x1 + 2x2 + � � �+ 2xk = t for

each t = 0; 1; : : : ; k2�4k+4. This implies that there is a fully indecomposable k�k orthogonal

pattern R1 such that x1 + 2x2 + � � �+ 2xk = t for each t = 0; 1; : : : ; k2 � 4k + 4.

We denote R(t) := R1 = L+U such that x1+2x2+ � � �+2xk = t, and for a suitable pattern

L.

For example, let k = 5. Then R(0) = [�0s], and

R(1) =

2
6664

� � � � �

� � � � �

� � � � �

� � � � �

0 � � � �

3
7775 ; R(2) =

2
6664

� � � � �

� � � � �

� � � � �

0 � � � �

0 � � � �

3
7775 ; R(3) =

2
6664

� � � � �

� � � � �

0 � � � �

0 � � � �

0 � � � �

3
7775 ;
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R(4) =

2
6664

� � � � �

� � � � �

� � � � �

0 � � � �

0 0 � � �

3
7775 ; R(5) =

2
6664

� � � � �

� � � � �

0 � � � �

0 � � � �

0 0 � � �

3
7775 ; R(6) =

2
6664

� � � � �

� � � � �

� � � � �

0 0 � � �

0 0 � � �

3
7775 ;

R(7) =

2
6664

� � � � �

� � � � �

0 � � � �

0 0 � � �

0 0 � � �

3
7775 ; R(8) =

2
6664

� � � � �

� � � � �

� � � � �

0 0 � � �

0 0 0 � �

3
7775 ; R(9) =

2
6664

� � � � �

� � � � �

0 � � � �

0 0 � � �

0 0 0 � �

3
7775 :

Note that

R(k2 � 4k + 4) =

2
666664

� � � � � � �

� � � � � � �

0 �
. . . � �

...
. . .

. . . � �

0 � � � 0 � �

3
777775
:

And also, we show that there is a fully indecomposable k � k orthogonal pattern R(t) for

each t = k
2
� 4k + 5; : : : ; k2 � 3k + 2. This will be done from R(k2 � 4k + 4) by the following

consecutive way:

In order to get R(k2�4k+5), permute the column 1 and column 2 of R(k2�4k+4), and to

get R(k2�4k+6), permute the column 1 and column 3 of R(k2�4k+4), and so on, and �nally

in order to get R(k2 � 3k + 2), we permute the column 1 and column k � 1 of R(k2 � 4k + 4).

Then for each t = k
2
�4k+5; : : : ; k2�3k+2, R(t) is still fully indecomposable k�k orthogonal

pattern.

For example, let k = 5. Then

R(10) =

2
6664

� � � � �

� � � � �

� 0 � � �

0 0 � � �

0 0 0 � �

3
7775 ; R(11) =

2
6664

� � � � �

� � � � �

� � 0 � �

� 0 0 � �

0 0 0 � �

3
7775 ; R(12) =

2
6664

� � � � �

� � � � �

� � � 0 �

� 0 � 0 �

� 0 0 0 �

3
7775 :

Thus we have shown the following lemma.

Lemma 3.4. Let n = 2m � 1. For k = 2; 3; : : : ;m, there exists a fully indecomposable n � n

orthogonal pattern with p nonzero entries such that

4n� 4 + (k2 � 4k + 4) � p � 4n� 4 + (2k2 � 7k + 6): (8)

In (8), we should note that

p = 4n� 4 if k = 2;

4n� 3 � p � 4n� 1 if k = 3;

4n � p � 4n+ 6 if k = 4;

4n+ 5 � p � 4n+ 17 if k = 5;

� � �

n
2 + 10n� 7

4
� p �

n
2 + 3n� 2

2
if k = m:
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In particular, for k � 1, since

4n� 4 + (k2 � 6k + 9) � p � 4n� 4 + (2k2 � 11k + 15)

we get

2k2 � 11k + 15� (k2 � 4k + 4) = k
2
� 7k + 11 > 0 for k � 5:

Thus there are orthogonal patterns with the same number of nonzero entries which are over-

lapped between k � 1 and k for k � 5. The following theorem is an immediate consequence of

Theorem 2.2 and Lemma 3.4.

Theorem 3.5. For each integer p with 4n � 4 � p � n
2
, if n is an odd number then there

exists a fully indecomposable n� n orthogonal matrix with exactly p nonzero entries.

Now we only need to consider the even n case. If n = 2 or 4 then from Lemma 2.1, there

exists a fully indecomposable n�n orthogonal matrix with exactly p nonzero entries such that

4n� 4 � p � n
2. Thus we may assume that n = 2m � 6.

For each k = 2; : : : ;m, we de�ne the m � (m + 1) (0,1)-matrix A
0

k = [aij ] with row sums

r1; r2; : : : ; rm and column sums c1; c2; : : : ; cm+1 by

aij =

8><
>:

1 if i = j; i = 1 and j = 2; : : : ; k;

j = i+ 1 for i = k; : : : ;m;

0 otherwise:

That is,
k timesz }| {

A
0

k =

2
666666666664

1 1 � � � � � � 1 0 � � � 0 0

1 0
. . .

. . . O

1 0

1 1

O 1
. . .
. . . 1

1 1

3
777777777775
m�(m+1)

: (9)

For k = m+ 1, de�ne

A
0

m+1 =

2
66664

1 1 � � � 1 1 1

1
. . . O

O 1

1 0

3
77775 :

Thus #(A0k) = #(A0m+1) = 2m, and for k = 2; : : : ;m,

r1 = k; r2 = � � � = rk�1 = 1; rk = � � � = rm = 2; c1 = 1; c2 = � � � = cm = 2; cm+1 = 1:

If we take Ri's and Cj 's as full orthogonal patterns of the order ri and cj for each i; j =

1; 2; : : : ;m and j = m+ 1, then the resulting woven matrix M(A0k) has the form
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2
66666666666666666666666666666666666666666666666664

� � � � � � �

...
...

... � � �
...

...
...

...

� � � � � � �

� �

. . .

� �

� � � �

� � � �

� � � �

� � � �

. . .

� � � �

� � � �

� � �

� � �

3
77777777777777777777777777777777777777777777777775

:

Thus

#(M(A0k)) = k(2k � 1) + 2(k � 2) + 4(n� k � (k � 2)� 2) + 6

= 4n� 4 + (2k2 � 7k + 6);

and

#(M(A0m+1)) = (m+ 1)n+ 2(n�m� 1) =
n
2 + 4n� 4

2
:

Remark 3.6. If k = 2 in (9) then #(M(A0k)) = 4n � 4 and M(A02) is a unique orthogonal

pattern for an even n as noted in [BBS].

Now, for a k � k orthogonal pattern R1 with a zero entry, let xi denote the number of zero

entries in the ith column of R1. Then for full orthogonal patterns Ri (i 6= 1) and Cj , we get

#(M(A0k)) = 4n� 4 + (2k2 � 7k + 6)� (x1 + 2x2 + 2x3 + � � �+ 2xk):

If we apply the similar method which was used in the previous odd n for A0k in (9), we can

show that there is a fully indecomposable n� n orthogonal pattern with p nonzero entries for

each p such that

4n� 4 � p �
n
2 + n+ 4

2
:
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Thus from (2), it is su�cient to show that there is a fully indecomposable n� n orthogonal

pattern with p nonzero entries for each p such that

n
2 + n+ 4

2
+ 1 � p �

n
2 + 3n� 2

2
� 1: (10)

In order to construct those, we shall use A0m+1 as a lattice of weaving. For a fully indecom-

posable (m + 1)� (m + 1) orthogonal pattern R1 with a zero entry, let xi denote the number

of zero entries in the ith column of R1. And we take the full orthogonal patterns Ri (i 6= 1)

and Cj . Then it can be easily shown that

#(M(A0m+1)) =
n
2 + 4n� 4

2
� (x1 + 2x2 + 2x3 + � � �+ 2xm + xm+1):

For x1 +2(x2+ � � �+ xm) +xm+1 = t, let R(t) denote an (m+1)� (m+1) orthogonal pattern

obtained with the similar method which was used in the previous odd n case. Then it is shown

similarly that there are fully indecomposable orthogonal patterns

R(0); R(1); : : : ; R((m� 1)2) = R

�
n
2
� 4n+ 4

4

�
:

It follows that there is a fully indecomposable n� n orthogonal pattern with p nonzero entries

for each p such that
n
2 + 12n� 12

4
� p �

n
2 + 4n� 4

2
: (11)

From (10), (11), since

n
2 + n+ 4

2
+ 1�

n
2 + 12n� 12

4
=

(n� 4)(n� 6)

4
� 0 if n � 6;

and
n
2 + 4n� 4

2
�
n
2 + 3n� 2

2
+ 1 =

n� 4

2
> if n � 6;

we have the following theorem.

Theorem 3.7. For each integer p with 4n � 4 � p � n
2
, if n is an even number then there

exists a fully indecomposable n� n orthogonal matrix with exactly p nonzero entries.

This leads us to the existence theorem of orthogonal matrix as following.

Theorem 3.8. For each integer p with 4n � 4 � p � n
2
, there exists a fully indecomposable

n� n orthogonal matrix with exactly p nonzero entries.

Proof. This follows from Theorem 3.5 and 3.7. �
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