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THE EXISTENCE THEOREM OF ORTHOGONAL
MATRICES WITH p NONZERO ENTRIES

GI1-SANG CHEON, SANG-GU LEE* AND SEOK-ZUN SONG

ABSTRACT. It was shown that if @ is a fully indecomposable n x n orthogonal matrix then Q
has at least 4n — 4 nonzero entries in 1993. In this paper, we show that for each integer p with
4n — 4 < p < n?, there exist a fully indecomposable n x n orthogonal matrix with exactly p
nonzero entries. Furthermore, we obtain a method of construction of a fully indecomposable n X n
orthogonal matrix which has exactly 4n — 4 nonzero entries. This is a part of the study in sparse
matrices.

1. Introduction

By a pattern we simply mean the arrangement of zero and nonzero (denoted *) entries in
a matrix. An n x n pattern A is called orthogonal if there is an orthogonal matrix A whose
pattern is A. An n x n matrix A is fully indecomposable, if the rows and columns of A can not
be permuted to obtain a matrix of the form

A11 0]

Az Az
where A1 and Ass are square and nonempty. Let #(A) denote the number of nonzero entries
in the matrix (or pattern) A. In [BBS], it was shown that if @ is a fully indecomposable n x n
orthogonal matrix then #(Q) > 4n — 4. Thus it is clear that if @ is a fully indecomposable

n X n orthogonal matrix then
4n — 4 <#(Q) <n?.

Equivalently, if ) is a fully indecomposable n X n orthogonal matrix then the number of zeros
in Q is between 0 and (n — 2)?. In [CJLP], it was studied the possible numbers of zeros in an
orthogonal matrix.

In this paper, we show that for each integer p with 4n — 4 < p < n?, there exist a fully inde-
composable n xn orthogonal matrix with exactly p nonzero entries. We introduce a constructive
approch for such matrices.

2. Orthogonal pattern by symbolic Gram-Schmidt procedure
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We say that an n X n matrix A (or pattern A) satisfies the Hall property if every k columns,
1 < k < n, collectively have nonzero entries in at least k rows. It is clear that there are full
rank matrices with pattern A if and only if A satisfies the Hall property. Note that every
lower triangular pattern such that its each main diagonal entry is nonzero satisfies the Hall
property. The Gram-Schmidt orthonormalization process can be used to construct the matrix
Q of the QR factorization of a matrix A. In [HJOD], it was given how to adapt the symbolic
Gram-Schmidt procedure to determine Q for a pattern A under the assumption that 4 has the
Hall property.

For a k x k pattern £ = [l;;] defined by
0 if © <y,
lij: * ifi:jorj:i—l,
Oor x  otherwise,

we say that £ is in echelon form whenever, for each ¢ and j with ¢ > j + 2, I;; = 0 then
li+1j :---:lkj =0 and lil :---:lij,1 :OfOI‘j 22

Clearly, each pattern £ in echelon form is lower triangular such that its each main diagonal
entry is nonzero. For example, if m = 4 then each pattern in echelon form is following:

* 0 0 0 * 0 0 0 * 0 0 O * 0 0 O * 0 0 O
*x % 0 0 *x % 0 0 * x 0 0 * x 0 0 * x 0 0
* % x 0|7 |* x %= 0|’[0 = % O’ |x % % O e 0 = x 0
* ok x %k 0 * % x 0 x x * 0 0 x =% 0 0 % =%

Since each pattern £ in echelon form satisfies Hall property, the next lemma follows from
[HJOD].

LEMMA 2.1. Let £ be an n X n pattern in echelon form. If Q is a pattern obtained from L by
symbolic Gram-Schmidt procedure, then Q is the same as L+U, and Q is a fully indecomposable
n x n orthogonal pattern, where U = [u;;] is the n X n pattern with

{ x if 1< ],
Ujj = )
0  otherwise,

and L+ U is a pattern which has a zero in a given position only when both patterns are zero in
that position.

Note that if we take £ as the n x n full lower triangular pattern and the n x n pattern

x % O

* *

respectively, then by Lemma 2.1, we can get the n x n orthogonal full pattern Q with #(Q) = n?
and the n xn orthogonal upper Hessenberg pattern Q with #(Q) = (n?+3n—2)/2, respectively,
where a matrix is full means all entries in the matrix are nonzero.



THE EXISTENCE THEOREM OF ORTHOGONAL MATRICES 111

THEOREM 2.2. For each integer p with

2 —
mEEE cpan, (1)

there is a fully indecomposable n X n orthogonal matriz with exactly p nonzero entries.

Proof. Let L be an n X n pattern in echelon form, and let Q be a pattern obtained from £ by
symbolic Gram-Schmidt procedure. Then by Lemma 2.1, Q is an n X n fully indecomposable
orthogonal pattern. Furthermore,

(n— l)n.

#(Q) = #(L) + #(U) = #(£) + =

It is easy to show that for each integer ¢ with 2n — 1 < ¢ < @, there is a pattern £ in

echelon form with exactly ¢ nonzero entries. Thus the theorem follows. W
Now, we only need to show that for each integer p with

2
-2
n-a<p<TENT2 (2)

there is a fully indecomposable n x n orthogonal matrix with exactly p nonzero entries. In order
to do this, we shall use the method of weaving and woven matrix which can be found in [Cr].

3. Orthogonal pattern by weaving

In [Cr], R. Craigen introduced a matrix method called weaving which is a method for building
new matrices from the given one. To every (0, 1)-matrix A = [a;;] having row sums r1,72,... ,rm
and column sums ¢y, ¢s, ... ,c,, we adopt the following notations.

s = s(i,7) := the number of nonzero positions in ith row of A up to jth column,
t = t(i,7) := the number of nonzero positions in jth column of A up to ith row.

Now let R; (i = 1,2,...,m) have r; columns ug, and C; (j = 1,2,...,n) have ¢; rows v}
using the indices s and ¢ introduced above. We define the “woven product” M = (Ry -+ Rp,) ®
(Cy ---Cp) = [M;j] block entrywise by

Mo — u,vi if a;; =1,
Y0 otherwise.

The matrix A is called the lattice of the weaving, and the matrix M obtained by weaving
is called a woven matrix. Note that the resulting woven matrix depends on the lattice and
matrices R;’s, Cj’s.

Throughout we let M (A) denote a woven matrix obtained by weaving from a given lattice

A.
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LEmMMA 3.1. [C] Let A be an m X n lattice having row sums r1,Ts, ... ,ry, and column sums
€1,Ca, ... ,Cn whose bipartite graph is connected. If R; (i =1,2,...,m) is a fully indecomposable
r; X 13 orthogonal matriz and C; (j = 1,2,...,n) is a fully indecomposable c; x c; orthogonal
matriz, then the woven matrix M (A) is fully indecomposable orthogonal matriz of order #(A).

Now, we are ready to construct orthogonal matrices with p nonzero entries in (2) by weaving,.

We are going to prove for odd n and for even n, respectively. Let us consider the odd
n = 2m — 1 case first.

For each k = 2,...,m, we define the m x m (0,1)-matrix A; = [a;;] with row sums
r1,T2,-.- ,ym and column sums ¢, ¢z, ... ,cm by

1 ifi=j;i=1landj=2,...,k;
a;; = j=i+1lfori=k,..., m—1,

0  otherwise.

That is,
k times
101 .- 1 0 07
1 0
: 0]
1 0
A = 1 1 ' (3)
0] 1
1
L l_me
Thus #(Ap) =2m —landr =k, rp=--=rp 1 =1, rp=---=rp_1 =2, rp, = 1,6, =
1,62:...:cm:2,Take
* %
Ry =|: )
* * sk
R2:"':Rk71:Rm: m:[*], (4)
* %

Then R;’s and C}’s are orthogonal patterns from Lemma 2.1. And since A; has a connected
bipartite graph, the resulting woven matrix M (Ay) is fully indecomposable (2m —1) x (2m —1)
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orthogonal pattern from Lemma 3.1, and has the following form:

* * X * X * X
* * X * X * X
* X
* X
L X* ok
* X * ok
* ok * X
X* ok L 3

X ok X ok
* ok * ok
X ok

Thus
#(M(AL) =k@2k—1) +2(k—2)+4(n—k— (k—2)— 1) +2
=4dn — 4+ (2k* — Tk +6).

REMARK 3.2. If k = 2 in (3) then #(M(Ax)) = 4n — 4 and M(As) is an unique orthogonal
pattern for an odd n as noted in [BBS].

Note that if we fix the matrices R;’s (¢ # 1) and C’s in (4) and (5) then # (M (Ax)) depends
on k x k orthogonal pattern R;. Now, fix R;’s (i # 1) and C;’s in (4) and (5), and suppose R;
has a zero entry. Let x; denote the number of zero entries in the ith column of R;. Then it is
clear that

#(M(Ag)) =4n — 4+ (2k* — Tk +6) — (v1 + 222 + 223 + - - - + 27%). (6)
LeMMA 3.3. For an integer k > 3, let x; be an integer such that
0<z; <k—i—-1, (=12,...,k—2).
Then the linear system

1 +2r9 + - -+ 2xp 9=t with x> -+ > 2 o (7)
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has a solution for each t = 0,1,... ,k*> — 4k + 4.

Proof. Let x(t) = (x1,2,... ,Tk—2) be a solution of (7). Clearly, for each integer ¢ with
0<t<k-—2 x(t)=(t0,...,0) is a solution of (7). We suppose that t > (k —2) + 1, and let

l
p()=k—-2+2> (k—i) (I=34,...,k=1).

Then it is easily shown that

x(k—2+2m—1)=(k—-3,m,0,...,0) and
x(k—2+2m)=(k—2,m,0,...,0)

foreachm =1,2,... ,k—=3 if (k—2)+1<t<p(3),
x(p(8)+2m—1)=(k—-3,k—3,m,0,...,0) and
x(p(3) +2m) = (k—2,k—3,m,0,...,0)

foreachm =1,2,... ,k—4 if p(3)+1<1t < p(4),
x(p(4)+2m—-1)=(k—3,k—3,k—4,m,0,...,0) and
x(p(4) +2m) = (k -2,k -3,k —4,m,0,...,0)
foreachm =1,2,... k=5 if p(4)+ 1<t < p(5),

x(plk=3)+2m—1) = (k—3,k—3,k—4,... . k— (k—3),m,0) and
x(p(k=3)+2m)=(k—2,k—3,k—4,... ,k—(k—3),m,0)
foreachm =1,2,... ,k—(k—2) if plk—3)+1<t<plk—2),
x(plk—-=2)+2m—-1)=(k—3,k—3,k—4,... ,k—(k—2),m) and
x(plk—2)+2m)=(k—2,k—-3,k—4,... )k —(k—2),m)

( foreachm =1,2,... )k—(k—1) if p(k—2)+1<t<pk—1)=k*—4k+4

is a solution of (7) for each t = (k —2) + 1,... ,k?> — 4k + 4. Thus the proof is complete. N

JFrom Lemma 2.1, for each k x k pattern £ in echelon form, we know that £ + U/ is a fully
indecomposable k£ x k orthogonal pattern. We take Ry as £ +U. Then z;_1 = z; = 0. Thus
from Lemma 3.3, we may take a solution x(t) = (x1,x2,... ,Zr_2,0,0) with the same values
T1,%2,...,Tk_o as ones in the proof of Lemma 3.3 to the system x; + 2z + --- + 2z = t for
eacht =0,1,...,k? —4k+4. This implies that there is a fully indecomposable k x k orthogonal
pattern R; such that x; 4+ 2zo + --- + 2z, =t foreach t =0,1,... , k% — 4k + 4.

We denote R(t) := Ry = L +U such that x; + 2z2 + - - - + 22, = ¢, and for a suitable pattern
L.

For example, let k = 5. Then R(0) = [«'s], and

R(1) = , R(2) =

O % X X X
* X X X %
* X X X %
* X X X %
* X X X %
* X X X %
* X X X %
* X X X %
* X X X %

=

S

I

OO O ¥ ¥
* X X X %
* X X X ¥
* X X X %
* X X X %

OO ¥ X ¥
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* ok % k% * k%
* k% k% * k%
RA)=|x x x x x|, R5)=|0 % x
0 * x % =x 0 %= =
LO 0 x % x| LO 0 =
Mk % % % %] M % %
* ok % k% * k%
R(M=1]0 = % *x x|, R =|% % =x
0 0 * = = 0 0 =
LO 0 % % % LO 0 O
Note that
*
*
R(E> —4k+4)= |0 =
0

* K X X X X X X X ¥
* K X X X X X X X ¥
1L

X ok

* ok
* ok

O O % ¥ ¥ OO % * *
O % ¥ K K K K X ¥ ¥
* K X X X X X X X ¥
* K X X X X X X X ¥

O OO % ¥ OO % % *

| I
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And also, we show that there is a fully indecomposable k x k orthogonal pattern R(t) for
each t = k? —4k +5,... , k> — 3k + 2. This will be done from R(k? — 4k + 4) by the following

consecutive way:

In order to get R(k* —4k+5), permute the column 1 and column 2 of R(k®> — 4k +4), and to
get R(k% —4k+6), permute the column 1 and column 3 of R(k%—4k+4), and so on, and finally
in order to get R(k? — 3k + 2), we permute the column 1 and column k — 1 of R(k®> — 4k + 4).
Then for each t = k* —4k+5,... ,k* —3k+2, R(t) is still fully indecomposable k x k orthogonal

pattern.

For example, let £ = 5. Then

x ok ok k% x ok ok k% x ok x k %
x ok ok k% x ok ok k% x ok x k %
R(10)=|x 0 * *x x|, R(11)=|* x 0 = x|, R(12) * % x 0 x
0 0 %= =x =% * 0 0 *x % x 0 % 0 =%
0 0 0 = = 0 0 0 = = * 0 0 0 =
Thus we have shown the following lemma.
LeEMMA 3.4. Letn =2m — 1. For k = 2,3,...,m, there exists a fully indecomposable n x n

orthogonal pattern with p nonzero entries such that

dn — 4+ (k* —4k+4) <p<4dn—4+ (2k* — Tk +6).

In (8), we should note that

p=4n—4

dn —3<p<dn-1
dn<p<4n+6
n+5<p<4dn+17

n?>+10n -7 n?>+3n—-2
2

<p<
4 SP=

if k=2,
if k=23,
if k=4,
if k=25,
if k=m.

(8)
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In particular, for £ — 1, since
dn — 4+ (k* — 6k +9) <p<4n —4+ (2k* — 11k + 15)

we get
2k —11k+ 15— (k* —4k+4) =k* =Tk +11>0 for k> 5.

Thus there are orthogonal patterns with the same number of nonzero entries which are over-
lapped between k — 1 and k for k£ > 5. The following theorem is an immediate consequence of
Theorem 2.2 and Lemma 3.4.

THEOREM 3.5. For each integer p with 4n — 4 < p < n?, if n is an odd number then there
exists a fully indecomposable n X n orthogonal matrix with exactly p nonzero entries.

Now we only need to consider the even n case. If n = 2 or 4 then from Lemma 2.1, there
exists a fully indecomposable n x n orthogonal matrix with exactly p nonzero entries such that
4n — 4 < p < n?. Thus we may assume that n = 2m > 6.

For each k = 2,... ,m, we define the m x (m + 1) (0,1)-matrix A}, = [a;;] with row sums
r1,72,... ,"y and column sums ci,ca,... ,¢pte1 by

1 ife=j;i=1landj=2,...,k;
Qaij = j=t+1lfori=k, ... ,m,

0  otherwise.

That is,
k times
rr 1 -.. 1 0 0 07
1 0
' 0]
, 1 0
Ay = 11 9)
(@] 1
-
- 11 mx(m-+1)
For k = m + 1, define
1 1 1 1 1
1
! _ .
m+1 — . 0]
0] 1
1 0
Thus #(A},) = #(A), 1) =2m, and for k =2,... ,m,
ri=knro=--=rp1=1Lr=-=rp=2aa=1,c=--=c¢cn=2, ¢py1 = 1.

If we take R;’s and C}’s as full orthogonal patterns of the order r; and c; for each i,j =
1,2,...,m and j = m + 1, then the resulting woven matrix M (Aj},) has the form
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O * % * %
* | % x * % * %
* %
* %
* % * %
* % * %
* % * %
* % * %
* % * %
* % * %
* % | %
* % | %
Thus

£(M(A)) = k(2k—1) +2(k—2) +4(n—k— (k—2) —2) +6
—dn—4+ (2K — Tk +6),
and )
(M (A1) = (m+ Dt 2(n—m - 1) = “F2E
REMARK 3.6. If k = 2 in (9) then #(M(A},)) = 4n — 4 and M(AS) is a unique orthogonal
pattern for an even n as noted in [BBS].

Now, for a k x k orthogonal pattern R; with a zero entry, let x; denote the number of zero
entries in the ith column of Ry. Then for full orthogonal patterns R; (i # 1) and C;, we get

#(M(A})) =4n — 4+ (2> — Tk + 6) — (z1 + 22 + 223 + - - - + 234,).

If we apply the similar method which was used in the previous odd n for A}, in (9), we can
show that there is a fully indecomposable n x n orthogonal pattern with p nonzero entries for
each p such that

2
an—4<p< ittt
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Thus from (2), it is sufficient to show that there is a fully indecomposable 1 x n orthogonal
pattern with p nonzero entries for each p such that

2 2
w.,_lgpgw_l_ (10)
2 2
In order to construct those, we shall use A7, | as a lattice of weaving. For a fully indecom-
posable (m + 1) x (m + 1) orthogonal pattern R; with a zero entry, let z; denote the number
of zero entries in the ith column of R;. And we take the full orthogonal patterns R; (i # 1)
and C;. Then it can be easily shown that

n?+4n —4
#(M (A1) = ————— = (@1 + 202 + 205 + -+ + 20 + Tm1)-
For 1 + 2(z2 + - - + Tpm) + Timy1 = ¢, let R(t) denote an (m + 1) x (m + 1) orthogonal pattern
obtained with the similar method which was used in the previous odd n case. Then it is shown
similarly that there are fully indecomposable orthogonal patterns

R(0),R(1),... ,R((m —1)>) = R <#> .

It follows that there is a fully indecomposable n x n orthogonal pattern with p nonzero entries
for each p such that
n? 4+ 12n — 12 n?+4+4n —4

<pL —. 11
1 <p< 5 (11)
From (10), (11), since
2 2 _ _ _
n+n+4+1_n +12n 12:(n 4)(n G)ZOifnZG,
2 4 4
and 244 4 2 2 4
n+2n— n +?2>n— +1:n; S if 0> 6,

we have the following theorem.

THEOREM 3.7. For each integer p with 4n — 4 < p < n2, if n is an even number then there
exists a fully indecomposable n X n orthogonal matrix with exactly p nonzero entries.

This leads us to the existence theorem of orthogonal matrix as following.

THEOREM 3.8. For each integer p with 4n — 4 < p < n2, there exists a fully indecomposable
n X n orthogonal matriz with exactly p nonzero entries.

Proof. This follows from Theorem 3.5 and 3.7. N
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