THE EXISTENCE THEOREM OF ORTHOGONAL MATRICES WITH *p* NONZERO ENTRIES

GI-SANG CHEON, SANG-GU LEE* AND SEOK-ZUN SONG

ABSTRACT. It was shown that if Q is a fully indecomposable $n \times n$ orthogonal matrix then Q has at least 4n - 4 nonzero entries in 1993. In this paper, we show that for each integer p with $4n - 4 \leq p \leq n^2$, there exist a fully indecomposable $n \times n$ orthogonal matrix with exactly p nonzero entries. Furthermore, we obtain a method of construction of a fully indecomposable $n \times n$ orthogonal matrix which has exactly 4n - 4 nonzero entries. This is a part of the study in sparse matrices.

1. Introduction

By a *pattern* we simply mean the arrangement of zero and nonzero (denoted *) entries in a matrix. An $n \times n$ pattern \mathcal{A} is called *orthogonal* if there is an orthogonal matrix A whose pattern is \mathcal{A} . An $n \times n$ matrix A is *fully indecomposable*, if the rows and columns of A can not be permuted to obtain a matrix of the form

$$\begin{bmatrix} A_{11} & O \\ A_{21} & A_{22} \end{bmatrix}$$

where A_{11} and A_{22} are square and nonempty. Let #(A) denote the number of nonzero entries in the matrix (or pattern) A. In [BBS], it was shown that if Q is a fully indecomposable $n \times n$ orthogonal matrix then $\#(Q) \ge 4n - 4$. Thus it is clear that if Q is a fully indecomposable $n \times n$ orthogonal matrix then

$$4n - 4 \le \#(Q) \le n^2.$$

Equivalently, if Q is a fully indecomposable $n \times n$ orthogonal matrix then the number of zeros in Q is between 0 and $(n-2)^2$. In [CJLP], it was studied the possible numbers of zeros in an orthogonal matrix.

In this paper, we show that for each integer p with $4n - 4 \le p \le n^2$, there exist a fully indecomposable $n \times n$ orthogonal matrix with exactly p nonzero entries. We introduce a constructive approch for such matrices.

2. Orthogonal pattern by symbolic Gram-Schmidt procedure

This work was supported by Brain Korea 21 Project.

¹⁹⁹¹ Mathematics Subject Classification. : Primary 05A15, 15A36, 15A57: Secondary 65F25.

Key words and phrases. :Orthogonal pattern, symbolic Gram-Schmidt procedure, weaving, woven matrix, lattice.

We say that an $n \times n$ matrix A (or pattern A) satisfies the *Hall property* if every k columns, $1 \leq k \leq n$, collectively have nonzero entries in at least k rows. It is clear that there are full rank matrices with pattern A if and only if A satisfies the Hall property. Note that every lower triangular pattern such that its each main diagonal entry is nonzero satisfies the Hall property. The Gram-Schmidt orthonormalization process can be used to construct the matrix Q of the QR factorization of a matrix A. In [HJOD], it was given how to adapt the symbolic Gram-Schmidt procedure to determine Q for a pattern A under the assumption that A has the Hall property.

For a $k \times k$ pattern $\mathcal{L} = [l_{ij}]$ defined by

$$l_{ij} = \begin{cases} 0 & \text{if } i < j, \\ * & \text{if } i = j \text{ or } j = i - 1, \\ 0 \text{ or } * & \text{otherwise,} \end{cases}$$

we say that \mathcal{L} is in *echelon form* whenever, for each *i* and *j* with $i \geq j+2$, $l_{ij} = 0$ then $l_{i+1,j} = \cdots = l_{kj} = 0$ and $l_{i1} = \cdots = l_{i,j-1} = 0$ for $j \geq 2$.

Clearly, each pattern \mathcal{L} in echelon form is lower triangular such that its each main diagonal entry is nonzero. For example, if m = 4 then each pattern in echelon form is following:

*	0	0	0		*	0	0	ך 0	*	0	0	ך 0		*	0	0	ך 0		۲*	0	0	ך 0	
*	*	0	0		*	*	0	0	*	*	0	0		*	*	0	0	. .	*	*	0	0	
*	*	*	0	,	*	*	*	0	, 0	*	*	0	,	*	*	*	0	, 01	0	*	*	0	•
*	*	*	*		LO	*	*	*	LO	*	*	*		0	0	*	*		L 0	0	*	*	

Since each pattern \mathcal{L} in echelon form satisfies Hall property, the next lemma follows from [HJOD].

LEMMA 2.1. Let \mathcal{L} be an $n \times n$ pattern in echelon form. If \mathcal{Q} is a pattern obtained from \mathcal{L} by symbolic Gram-Schmidt procedure, then \mathcal{Q} is the same as $\mathcal{L}+\mathcal{U}$, and \mathcal{Q} is a fully indecomposable $n \times n$ orthogonal pattern, where $\mathcal{U} = [u_{ij}]$ is the $n \times n$ pattern with

$$u_{ij} = \begin{cases} * & \text{if } i < j, \\ 0 & \text{otherwise} \end{cases}$$

and $\mathcal{L} + \mathcal{U}$ is a pattern which has a zero in a given position only when both patterns are zero in that position.

Note that if we take \mathcal{L} as the $n \times n$ full lower triangular pattern and the $n \times n$ pattern

$$\begin{bmatrix} * & & & \\ * & * & O & \\ & * & \ddots & \\ & O & \ddots & \ddots & \\ & & & & * & * \end{bmatrix}$$

respectively, then by Lemma 2.1, we can get the $n \times n$ orthogonal full pattern \mathcal{Q} with $\#(\mathcal{Q}) = n^2$ and the $n \times n$ orthogonal upper Hessenberg pattern \mathcal{Q} with $\#(\mathcal{Q}) = (n^2 + 3n - 2)/2$, respectively, where a matrix is full means all entries in the matrix are nonzero. THEOREM 2.2. For each integer p with

$$\frac{n^2 + 3n - 2}{2} \le p \le n^2,\tag{1}$$

there is a fully indecomposable $n \times n$ orthogonal matrix with exactly p nonzero entries.

Proof. Let \mathcal{L} be an $n \times n$ pattern in echelon form, and let \mathcal{Q} be a pattern obtained from \mathcal{L} by symbolic Gram-Schmidt procedure. Then by Lemma 2.1, \mathcal{Q} is an $n \times n$ fully indecomposable orthogonal pattern. Furthermore,

$$#(Q) = #(L) + #(U) = #(L) + \frac{(n-1)n}{2}.$$

It is easy to show that for each integer q with $2n - 1 \le q \le \frac{n(n+1)}{2}$, there is a pattern \mathcal{L} in echelon form with exactly q nonzero entries. Thus the theorem follows.

Now, we only need to show that for each integer p with

$$4n - 4 \le p \le \frac{n^2 + 3n - 2}{2} - 1 \tag{2}$$

there is a fully indecomposable $n \times n$ orthogonal matrix with exactly p nonzero entries. In order to do this, we shall use the method of weaving and woven matrix which can be found in [Cr].

3. Orthogonal pattern by weaving

In [Cr], R. Craigen introduced a matrix method called *weaving* which is a method for building new matrices from the given one. To every (0, 1)-matrix $A = [a_{ij}]$ having row sums r_1, r_2, \ldots, r_m and column sums c_1, c_2, \ldots, c_n , we adopt the following notations.

s = s(i, j) := the number of nonzero positions in *i*th row of A up to *j*th column,

t = t(i, j) := the number of nonzero positions in *j*th column of A up to *i*th row.

Now let R_i (i = 1, 2, ..., m) have r_i columns \mathbf{u}_s , and C_j (j = 1, 2, ..., n) have c_j rows \mathbf{v}_t^T using the indices s and t introduced above. We define the "woven product" $M = (R_1 \cdots R_m) \circledast (C_1 \cdots C_n) = [M_{ij}]$ block entrywise by

$$M_{ij} = \begin{cases} \mathbf{u}_s \mathbf{v}_t^T & \text{if } a_{ij} = 1, \\ 0 & \text{otherwise.} \end{cases}$$

The matrix A is called the *lattice* of the weaving, and the matrix M obtained by weaving is called a *woven* matrix. Note that the resulting woven matrix depends on the lattice and matrices R_i 's, C_j 's.

Throughout we let M(A) denote a woven matrix obtained by weaving from a given lattice A.

LEMMA 3.1. [C] Let A be an $m \times n$ lattice having row sums r_1, r_2, \ldots, r_m and column sums c_1, c_2, \ldots, c_n whose bipartite graph is connected. If R_i $(i = 1, 2, \ldots, m)$ is a fully indecomposable $r_i \times r_i$ orthogonal matrix and C_j $(j = 1, 2, \ldots, n)$ is a fully indecomposable $c_j \times c_j$ orthogonal matrix, then the woven matrix M(A) is fully indecomposable orthogonal matrix of order #(A).

Now, we are ready to construct orthogonal matrices with p nonzero entries in (2) by weaving.

We are going to prove for odd n and for even n, respectively. Let us consider the odd n = 2m - 1 case first.

For each k = 2, ..., m, we define the $m \times m$ (0,1)-matrix $A_k = [a_{ij}]$ with row sums $r_1, r_2, ..., r_m$ and column sums $c_1, c_2, ..., c_m$ by

$$a_{ij} = \begin{cases} 1 & \text{if } i = j; \ i = 1 \text{ and } j = 2, \dots, k; \\ j = i + 1 \text{ for } i = k, \dots, m - 1, \\ 0 & \text{otherwise.} \end{cases}$$

That is,

Thus $\#(A_k) = 2m - 1$ and $r_1 = k$, $r_2 = \cdots = r_{k-1} = 1$, $r_k = \cdots = r_{m-1} = 2$, $r_m = 1, c_1 = 1$, $c_2 = \cdots = c_m = 2$. Take

$$R_1 = \begin{bmatrix} * & \cdots & * \\ \vdots & \vdots & \vdots \\ * & \cdots & * \end{bmatrix}_{k \times k},$$

$$R_2 = \dots = R_{k-1} = R_m = C_m = [*], \qquad (4)$$

$$R_k = \dots = R_{m-1} = C_2 = \dots = C_m = \begin{bmatrix} * & * \\ * & * \end{bmatrix}.$$
 (5)

Then R_i 's and C_j 's are orthogonal patterns from Lemma 2.1. And since A_k has a connected bipartite graph, the resulting woven matrix $M(A_k)$ is fully indecomposable $(2m-1) \times (2m-1)$

orthogonal pattern from Lemma 3.1, and has the following form:

*	*	*		*	*	*	*]
:	÷	÷		÷	÷	:	:									
*	*	*		*	*	*	*									
	*	*														
			· · .													
				*	*											
						*	*	*	*							
						*	*	*	*							
								*	*	*	*					
								*	*	*	*					
												·				
													*	*	*	*
													*	*	*	*
															*	*

Thus

$$#(M(A_k)) = k(2k-1) + 2(k-2) + 4(n-k-(k-2)-1) + 2$$

= 4n-4 + (2k² - 7k + 6).

REMARK 3.2. If k = 2 in (3) then $\#(M(A_k)) = 4n - 4$ and $M(A_2)$ is an unique orthogonal pattern for an odd n as noted in [BBS].

Note that if we fix the matrices R_i 's $(i \neq 1)$ and C_j 's in (4) and (5) then $\#(M(A_k))$ depends on $k \times k$ orthogonal pattern R_1 . Now, fix R_i 's $(i \neq 1)$ and C_j 's in (4) and (5), and suppose R_1 has a zero entry. Let x_i denote the number of zero entries in the *i*th column of R_1 . Then it is clear that

$$#(M(A_k)) = 4n - 4 + (2k^2 - 7k + 6) - (x_1 + 2x_2 + 2x_3 + \dots + 2x_k).$$
(6)

LEMMA 3.3. For an integer $k \geq 3$, let x_i be an integer such that

$$0 \le x_i \le k - i - 1, \quad (i = 1, 2, \dots, k - 2).$$

Then the linear system

$$x_1 + 2x_2 + \dots + 2x_{k-2} = t \quad with \quad x_1 \ge \dots \ge x_{k-2}$$
 (7)

has a solution for each $t = 0, 1, ..., k^2 - 4k + 4$.

Proof. Let $\mathbf{x}(t) = (x_1, x_2, \dots, x_{k-2})$ be a solution of (7). Clearly, for each integer t with $0 \le t \le k-2$, $\mathbf{x}(t) = (t, 0, \dots, 0)$ is a solution of (7). We suppose that $t \ge (k-2) + 1$, and let

$$\rho(l) = k - 2 + 2 \sum_{i=3}^{l} (k - i) \qquad (l = 3, 4, \dots, k - 1).$$

Then it is easily shown that

$$\begin{aligned} \mathbf{x}(k-2+2m-1) &= (k-3,m,0,\ldots,0) \text{ and} \\ \mathbf{x}(k-2+2m) &= (k-2,m,0,\ldots,0) \\ \text{for each } m &= 1,2,\ldots,k-3 \text{ if } (k-2)+1 \leq t \leq \rho(3), \\ \mathbf{x}(\rho(3)+2m-1) &= (k-3,k-3,m,0,\ldots,0) \text{ and} \\ \mathbf{x}(\rho(3)+2m) &= (k-2,k-3,m,0,\ldots,0) \\ \text{for each } m &= 1,2,\ldots,k-4 \text{ if } \rho(3)+1 \leq t \leq \rho(4), \\ \mathbf{x}(\rho(4)+2m-1) &= (k-3,k-3,k-4,m,0,\ldots,0) \\ \text{for each } m &= 1,2,\ldots,k-5 \text{ if } \rho(4)+1 \leq t \leq \rho(5), \\ \dots \\ \mathbf{x}(\rho(k-3)+2m-1) &= (k-3,k-3,k-4,\ldots,k-(k-3),m,0) \\ \text{for each } m &= 1,2,\ldots,k-5 \text{ if } \rho(4)+1 \leq t \leq \rho(5), \\ \dots \\ \mathbf{x}(\rho(k-3)+2m) &= (k-2,k-3,k-4,\ldots,k-(k-3),m,0) \\ \text{for each } m &= 1,2,\ldots,k-(k-2) \text{ if } \rho(k-3)+1 \leq t \leq \rho(k-2), \\ \mathbf{x}(\rho(k-2)+2m-1) &= (k-3,k-3,k-4,\ldots,k-(k-2),m) \\ \text{for each } m &= 1,2,\ldots,k-(k-1) \text{ if } \rho(k-2)+1 \leq t \leq \rho(k-1) \\ = k^2 - 4k + 4 \end{aligned}$$

is a solution of (7) for each $t = (k - 2) + 1, \dots, k^2 - 4k + 4$. Thus the proof is complete.

From Lemma 2.1, for each $k \times k$ pattern \mathcal{L} in echelon form, we know that $\mathcal{L} + \mathcal{U}$ is a fully indecomposable $k \times k$ orthogonal pattern. We take R_1 as $\mathcal{L} + \mathcal{U}$. Then $x_{k-1} = x_k = 0$. Thus from Lemma 3.3, we may take a solution $\mathbf{x}(t) = (x_1, x_2, \ldots, x_{k-2}, 0, 0)$ with the same values $x_1, x_2, \ldots, x_{k-2}$ as ones in the proof of Lemma 3.3 to the system $x_1 + 2x_2 + \cdots + 2x_k = t$ for each $t = 0, 1, \ldots, k^2 - 4k + 4$. This implies that there is a fully indecomposable $k \times k$ orthogonal pattern R_1 such that $x_1 + 2x_2 + \cdots + 2x_k = t$ for each $t = 0, 1, \ldots, k^2 - 4k + 4$.

We denote $R(t) := R_1 = \mathcal{L} + \mathcal{U}$ such that $x_1 + 2x_2 + \cdots + 2x_k = t$, and for a suitable pattern \mathcal{L} .

For example, let k = 5. Then R(0) = [*'s], and

114

And also, we show that there is a fully indecomposable $k \times k$ orthogonal pattern R(t) for each $t = k^2 - 4k + 5, \ldots, k^2 - 3k + 2$. This will be done from $R(k^2 - 4k + 4)$ by the following consecutive way:

In order to get $R(k^2 - 4k + 5)$, permute the column 1 and column 2 of $R(k^2 - 4k + 4)$, and to get $R(k^2 - 4k + 6)$, permute the column 1 and column 3 of $R(k^2 - 4k + 4)$, and so on, and finally in order to get $R(k^2 - 3k + 2)$, we permute the column 1 and column k - 1 of $R(k^2 - 4k + 4)$. Then for each $t = k^2 - 4k + 5, \ldots, k^2 - 3k + 2$, R(t) is still fully indecomposable $k \times k$ orthogonal pattern.

For example, let k = 5. Then

Thus we have shown the following lemma.

LEMMA 3.4. Let n = 2m - 1. For k = 2, 3, ..., m, there exists a fully indecomposable $n \times n$ orthogonal pattern with p nonzero entries such that

$$4n - 4 + (k^2 - 4k + 4) \le p \le 4n - 4 + (2k^2 - 7k + 6).$$
(8)

In (8), we should note that

$$\begin{split} p &= 4n-4 \quad \text{if} \ \ k = 2, \\ 4n-3 &\leq p \leq 4n-1 \quad \text{if} \ \ k = 3, \\ 4n &\leq p \leq 4n+6 \quad \text{if} \ \ k = 4, \\ 4n+5 &\leq p \leq 4n+17 \quad \text{if} \ \ k = 5, \\ & & \\ & \\ \frac{n^2+10n-7}{4} \leq p \leq \frac{n^2+3n-2}{2} \quad \text{if} \ \ k = m. \end{split}$$

In particular, for k-1, since

$$4n - 4 + (k^2 - 6k + 9) \le p \le 4n - 4 + (2k^2 - 11k + 15)$$

we get

$$2k^2 - 11k + 15 - (k^2 - 4k + 4) = k^2 - 7k + 11 > 0$$
 for $k \ge 5$.

Thus there are orthogonal patterns with the same number of nonzero entries which are overlapped between k-1 and k for $k \ge 5$. The following theorem is an immediate consequence of Theorem 2.2 and Lemma 3.4.

THEOREM 3.5. For each integer p with $4n - 4 \le p \le n^2$, if n is an odd number then there exists a fully indecomposable $n \times n$ orthogonal matrix with exactly p nonzero entries.

Now we only need to consider the even n case. If n = 2 or 4 then from Lemma 2.1, there exists a fully indecomposable $n \times n$ orthogonal matrix with exactly p nonzero entries such that $4n - 4 \le p \le n^2$. Thus we may assume that $n = 2m \ge 6$.

For each k = 2, ..., m, we define the $m \times (m + 1)$ (0,1)-matrix $A'_k = [a_{ij}]$ with row sums $r_1, r_2, ..., r_m$ and column sums $c_1, c_2, ..., c_{m+1}$ by

$$a_{ij} = \begin{cases} 1 & \text{if } i = j; \ i = 1 \text{ and } j = 2, \dots, k; \\ & j = i + 1 \text{ for } i = k, \dots, m, \\ 0 & \text{ otherwise.} \end{cases}$$

That is,

For k = m + 1, define

$$A'_{m+1} = \begin{bmatrix} 1 & 1 & \cdots & 1 & 1 & 1 \\ 1 & 1 & & & & \\ & \ddots & & O & \\ O & 1 & & \\ & & & 1 & 0 \end{bmatrix}.$$

Thus $\#(A'_k) = \#(A'_{m+1}) = 2m$, and for k = 2, ..., m,

$$r_1 = k, r_2 = \dots = r_{k-1} = 1, r_k = \dots = r_m = 2, c_1 = 1, c_2 = \dots = c_m = 2, c_{m+1} = 1.$$

If we take R_i 's and C_j 's as full orthogonal patterns of the order r_i and c_j for each i, j = 1, 2, ..., m and j = m + 1, then the resulting woven matrix $M(A'_k)$ has the form

Γ	*	*	*		*	*	*	*										-	1
	:	÷	:		:		÷	÷											
	*	*	*		*	*	*	*											
	*	*	*		*	*	*	*										<u> </u>	
		*	*																
				•••															
					*	*													
							*	*	*	*									
							*	*	*	*									
									*	*	*	*							
									*	*	*	*							
													·						
														*	*	*	*		
														*	*	*	*		
																*	*	*	
L																*	*	*	

Thus

$$#(M(A'_k)) = k(2k-1) + 2(k-2) + 4(n-k-(k-2)-2) + 6$$

= 4n - 4 + (2k² - 7k + 6),

and

$$\#(M(A'_{m+1})) = (m+1)n + 2(n-m-1) = \frac{n^2 + 4n - 4}{2}.$$

REMARK 3.6. If k = 2 in (9) then $\#(M(A'_k)) = 4n - 4$ and $M(A'_2)$ is a unique orthogonal pattern for an even n as noted in [BBS].

Now, for a $k \times k$ orthogonal pattern R_1 with a zero entry, let x_i denote the number of zero entries in the *i*th column of R_1 . Then for full orthogonal patterns R_i $(i \neq 1)$ and C_j , we get

 $#(M(A'_k)) = 4n - 4 + (2k^2 - 7k + 6) - (x_1 + 2x_2 + 2x_3 + \dots + 2x_k).$

If we apply the similar method which was used in the previous odd n for A'_k in (9), we can show that there is a fully indecomposable $n \times n$ orthogonal pattern with p nonzero entries for each p such that

$$4n - 4 \le p \le \frac{n^2 + n + 4}{2}.$$

.

Thus from (2), it is sufficient to show that there is a fully indecomposable $n \times n$ orthogonal pattern with p nonzero entries for each p such that

$$\frac{n^2 + n + 4}{2} + 1 \le p \le \frac{n^2 + 3n - 2}{2} - 1.$$
(10)

In order to construct those, we shall use A'_{m+1} as a lattice of weaving. For a fully indecomposable $(m + 1) \times (m + 1)$ orthogonal pattern R_1 with a zero entry, let x_i denote the number of zero entries in the *i*th column of R_1 . And we take the full orthogonal patterns R_i $(i \neq 1)$ and C_j . Then it can be easily shown that

$$\#(M(A'_{m+1})) = \frac{n^2 + 4n - 4}{2} - (x_1 + 2x_2 + 2x_3 + \dots + 2x_m + x_{m+1}).$$

For $x_1 + 2(x_2 + \cdots + x_m) + x_{m+1} = t$, let R(t) denote an $(m+1) \times (m+1)$ orthogonal pattern obtained with the similar method which was used in the previous odd n case. Then it is shown similarly that there are fully indecomposable orthogonal patterns

$$R(0), R(1), \dots, R((m-1)^2) = R\left(\frac{n^2 - 4n + 4}{4}\right).$$

It follows that there is a fully indecomposable $n \times n$ orthogonal pattern with p nonzero entries for each p such that

$$\frac{n^2 + 12n - 12}{4} \le p \le \frac{n^2 + 4n - 4}{2}.$$
(11)

From (10), (11), since

$$\frac{n^2 + n + 4}{2} + 1 - \frac{n^2 + 12n - 12}{4} = \frac{(n-4)(n-6)}{4} \ge 0 \quad \text{if} \quad n \ge 6,$$

and

$$\frac{n^2 + 4n - 4}{2} - \frac{n^2 + 3n - 2}{2} + 1 = \frac{n - 4}{2} > \text{ if } n \ge 6,$$

we have the following theorem.

THEOREM 3.7. For each integer p with $4n - 4 \le p \le n^2$, if n is an even number then there exists a fully indecomposable $n \times n$ orthogonal matrix with exactly p nonzero entries.

This leads us to the existence theorem of orthogonal matrix as following.

THEOREM 3.8. For each integer p with $4n - 4 \le p \le n^2$, there exists a fully indecomposable $n \times n$ orthogonal matrix with exactly p nonzero entries.

Proof. This follows from Theorem 3.5 and 3.7.

REFERENCES

[BBS] L. B. Beasley, R. A. Brualdi and B. L. Shader, Combinatorial Orthogonality, in *Combinatorial and Graph-Theoretical Problems in Linear Algebra* (R. A. Brualdi, S. Friedland and V. Klee, eds.), Springer-Verlag, 207-218, 1993.

118

[C] G.-S. Cheon, Sparse orthogonal matrices by weaving, *Kangweon-Kyungki Math. J.*, V. 7(1),61-69, 1999.

[CS1] G.-S. Cheon and B. L. Shader, How sparse can a matrix with orthogonal rows be?, J. of Combinatorial Theory A, V. 85, 29-40, 1999.

[CS2] G.-S. Cheon and B. L. Shader, Constructions for the sparsest orthogonal matrices, *Bulletin of Korean Math. Soc.*, V. 39(1), 119-129, 1999.

[CJLP] G.-S. Cheon, C. R. Johnson, S.-G. Lee and E. J. Pribble, The Possible numbers of zeros in an orthogonal matrix, *Elec. J. of Linear Algebra.* V. 5, 19-23, 1999.

[Cr] R. Craigen, The craft of weaving matrices, Congressus Numerantium 92, 9-28, 1993.

[HJOD] D. R. Hare, C. R. Johnson, D. D. Olesky and P. Van Den Driessche, Sparsity analysis of the QR factorization, *SIAM J. Matrix Anal. Appl.*, 14(3), 655-669, 1993.

Department of Mathematics, Daejin University, Pocheon 487-711, Korea

Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea, sglee@yurim.skku.ac.kr

Department of Mathematics, Cheju National University, Cheju 690-756, Korea