THE EXISTENCE THEOREM OF ORTHOGONAL MATRICES WITH p NONZERO ENTRIES

Gi-Sang Cheon, Sang-Gu Lee* and Seok-Zun Song

Abstract

It was shown that if Q is a fully indecomposable $n \times n$ orthogonal matrix then Q has at least $4 n-4$ nonzero entries in 1993. In this paper, we show that for each integer p with $4 n-4 \leq p \leq n^{2}$, there exist a fully indecomposable $n \times n$ orthogonal matrix with exactly p nonzero entries. Furthermore, we obtain a method of construction of a fully indecomposable $n \times n$ orthogonal matrix which has exactly $4 n-4$ nonzero entries. This is a part of the study in sparse matrices.

1. Introduction

By a pattern we simply mean the arrangement of zero and nonzero (denoted *) entries in a matrix. An $n \times n$ pattern \mathcal{A} is called orthogonal if there is an orthogonal matrix A whose pattern is \mathcal{A}. An $n \times n$ matrix A is fully indecomposable, if the rows and columns of A can not be permuted to obtain a matrix of the form

$$
\left[\begin{array}{cc}
A_{11} & O \\
A_{21} & A_{22}
\end{array}\right]
$$

where A_{11} and A_{22} are square and nonempty. Let $\#(A)$ denote the number of nonzero entries in the matrix (or pattern) A. In [BBS], it was shown that if Q is a fully indecomposable $n \times n$ orthogonal matrix then $\#(Q) \geq 4 n-4$. Thus it is clear that if Q is a fully indecomposable $n \times n$ orthogonal matrix then

$$
4 n-4 \leq \#(Q) \leq n^{2} .
$$

Equivalently, if Q is a fully indecomposable $n \times n$ orthogonal matrix then the number of zeros in Q is between 0 and $(n-2)^{2}$. In [CJLP], it was studied the possible numbers of zeros in an orthogonal matrix.

In this paper, we show that for each integer p with $4 n-4 \leq p \leq n^{2}$, there exist a fully indecomposable $n \times n$ orthogonal matrix with exactly p nonzero entries. We introduce a constructive approch for such matrices.

2. Orthogonal pattern by symbolic Gram-Schmidt procedure

[^0]We say that an $n \times n$ matrix A (or pattern \mathcal{A}) satisfies the Hall property if every k columns, $1 \leq k \leq n$, collectively have nonzero entries in at least k rows. It is clear that there are full rank matrices with pattern \mathcal{A} if and only if \mathcal{A} satisfies the Hall property. Note that every lower triangular pattern such that its each main diagonal entry is nonzero satisfies the Hall property. The Gram-Schmidt orthonormalization process can be used to construct the matrix Q of the $Q R$ factorization of a matrix A. In [HJOD], it was given how to adapt the symbolic Gram-Schmidt procedure to determine \mathcal{Q} for a pattern \mathcal{A} under the assumption that \mathcal{A} has the Hall property.

For a $k \times k$ pattern $\mathcal{L}=\left[l_{i j}\right]$ defined by

$$
l_{i j}= \begin{cases}0 & \text { if } i<j \\ * & \text { if } i=j \text { or } j=i-1 \\ 0 \text { or } * & \text { otherwise }\end{cases}
$$

we say that \mathcal{L} is in echelon form whenever, for each i and j with $i \geq j+2, l_{i j}=0$ then $l_{i+1}{ }_{j}=\cdots=l_{k j}=0$ and $l_{i 1}=\cdots=l_{i j-1}=0$ for $j \geq 2$.

Clearly, each pattern \mathcal{L} in echelon form is lower triangular such that its each main diagonal entry is nonzero. For example, if $m=4$ then each pattern in echelon form is following:

$$
\left[\begin{array}{llll}
* & 0 & 0 & 0 \\
* & * & 0 & 0 \\
* & * & * & 0 \\
* & * & * & *
\end{array}\right],\left[\begin{array}{llll}
* & 0 & 0 & 0 \\
* & * & 0 & 0 \\
* & * & * & 0 \\
0 & * & * & *
\end{array}\right],\left[\begin{array}{llll}
* & 0 & 0 & 0 \\
* & * & 0 & 0 \\
0 & * & * & 0 \\
0 & * & * & *
\end{array}\right],\left[\begin{array}{llll}
* & 0 & 0 & 0 \\
* & * & 0 & 0 \\
* & * & * & 0 \\
0 & 0 & * & *
\end{array}\right], \text { or }\left[\begin{array}{llll}
* & 0 & 0 & 0 \\
* & * & 0 & 0 \\
0 & * & * & 0 \\
0 & 0 & * & *
\end{array}\right] .
$$

Since each pattern \mathcal{L} in echelon form satisfies Hall property, the next lemma follows from [HJOD].
Lemma 2.1. Let \mathcal{L} be an $n \times n$ pattern in echelon form. If \mathcal{Q} is a pattern obtained from \mathcal{L} by symbolic Gram-Schmidt procedure, then \mathcal{Q} is the same as $\mathcal{L}+\mathcal{U}$, and \mathcal{Q} is a fully indecomposable $n \times n$ orthogonal pattern, where $\mathcal{U}=\left[u_{i j}\right]$ is the $n \times n$ pattern with

$$
u_{i j}= \begin{cases}* & \text { if } i<j \\ 0 & \text { otherwise }\end{cases}
$$

and $\mathcal{L}+\mathcal{U}$ is a pattern which has a zero in a given position only when both patterns are zero in that position.

Note that if we take \mathcal{L} as the $n \times n$ full lower triangular pattern and the $n \times n$ pattern

$$
\left[\begin{array}{lllll}
* & & & & \\
* & * & & O & \\
& * & \ddots & & \\
& O & \ddots & \ddots & \\
& & & * & *
\end{array}\right]
$$

respectively, then by Lemma 2.1, we can get the $n \times n$ orthogonal full pattern \mathcal{Q} with $\#(\mathcal{Q})=n^{2}$ and the $n \times n$ orthogonal upper Hessenberg pattern \mathcal{Q} with $\#(\mathcal{Q})=\left(n^{2}+3 n-2\right) / 2$, respectively, where a matrix is full means all entries in the matrix are nonzero.

Theorem 2.2. For each integer p with

$$
\begin{equation*}
\frac{n^{2}+3 n-2}{2} \leq p \leq n^{2} \tag{1}
\end{equation*}
$$

there is a fully indecomposable $n \times n$ orthogonal matrix with exactly p nonzero entries.
Proof. Let \mathcal{L} be an $n \times n$ pattern in echelon form, and let \mathcal{Q} be a pattern obtained from \mathcal{L} by symbolic Gram-Schmidt procedure. Then by Lemma $2.1, \mathcal{Q}$ is an $n \times n$ fully indecomposable orthogonal pattern. Furthermore,

$$
\#(\mathcal{Q})=\#(\mathcal{L})+\#(\mathcal{U})=\#(\mathcal{L})+\frac{(n-1) n}{2}
$$

It is easy to show that for each integer q with $2 n-1 \leq q \leq \frac{n(n+1)}{2}$, there is a pattern \mathcal{L} in echelon form with exactly q nonzero entries. Thus the theorem follows.

Now, we only need to show that for each integer p with

$$
\begin{equation*}
4 n-4 \leq p \leq \frac{n^{2}+3 n-2}{2}-1 \tag{2}
\end{equation*}
$$

there is a fully indecomposable $n \times n$ orthogonal matrix with exactly p nonzero entries. In order to do this, we shall use the method of weaving and woven matrix which can be found in [Cr].

3. Orthogonal pattern by weaving

In [Cr], R. Craigen introduced a matrix method called weaving which is a method for building new matrices from the given one. To every $(0,1)$-matrix $A=\left[a_{i j}\right]$ having row sums $r_{1}, r_{2}, \ldots, r_{m}$ and column sums $c_{1}, c_{2}, \ldots, c_{n}$, we adopt the following notations.
$s=s(i, j):=$ the number of nonzero positions in i th row of A up to j th column,
$t=t(i, j):=$ the number of nonzero positions in j th column of A up to i th row.
Now let $R_{i}(i=1,2, \ldots, m)$ have r_{i} columns \mathbf{u}_{s}, and $C_{j}(j=1,2, \ldots, n)$ have c_{j} rows \mathbf{v}_{t}^{T} using the indices s and t introduced above. We define the "woven product" $M=\left(R_{1} \cdots R_{m}\right) \circledast$ $\left(C_{1} \cdots C_{n}\right)=\left[M_{i j}\right]$ block entrywise by

$$
M_{i j}= \begin{cases}\mathbf{u}_{s} \mathbf{v}_{t}^{T} & \text { if } a_{i j}=1 \\ 0 & \text { otherwise }\end{cases}
$$

The matrix A is called the lattice of the weaving, and the matrix M obtained by weaving is called a woven matrix. Note that the resulting woven matrix depends on the lattice and matrices $R_{i}{ }^{\prime} \mathrm{s}, C_{j}$'s.

Throughout we let $M(A)$ denote a woven matrix obtained by weaving from a given lattice A.

Lemma 3.1. [C] Let A be an $m \times n$ lattice having row sums $r_{1}, r_{2}, \ldots, r_{m}$ and column sums $c_{1}, c_{2}, \ldots, c_{n}$ whose bipartite graph is connected. If $R_{i}(i=1,2, \ldots, m)$ is a fully indecomposable $r_{i} \times r_{i}$ orthogonal matrix and $C_{j}(j=1,2, \ldots, n)$ is a fully indecomposable $c_{j} \times c_{j}$ orthogonal matrix, then the woven matrix $M(A)$ is fully indecomposable orthogonal matrix of order $\#(A)$.

Now, we are ready to construct orthogonal matrices with p nonzero entries in (2) by weaving.
We are going to prove for odd n and for even n, respectively. Let us consider the odd $n=2 m-1$ case first.

For each $k=2, \ldots, m$, we define the $m \times m(0,1)$-matrix $A_{k}=\left[a_{i j}\right]$ with row sums $r_{1}, r_{2}, \ldots, r_{m}$ and column sums $c_{1}, c_{2}, \ldots, c_{m}$ by

$$
a_{i j}=\left\{\begin{array}{cc}
1 \quad \text { if } i=j ; i=1 \text { and } j=2, \ldots, k \\
& j=i+1 \text { for } i=k, \ldots, m-1 \\
0 \quad \text { otherwise }
\end{array}\right.
$$

That is,

$$
A_{k}=\left[\begin{array}{cccccccc}
1 & 1 & \cdots & \cdots & 1 & 0 & \cdots & 0 \\
& 1 & 0 & & & & & \tag{3}\\
& & \ddots & \ddots & & & O & \\
& & & 1 & 0 & & & \\
& & & 1 & 1 & & \\
& & & & 1 & \ddots & \\
& & & & & & \ddots & 1 \\
& & & & & & 1
\end{array}\right]_{m \times m}
$$

Thus $\#\left(A_{k}\right)=2 m-1$ and $r_{1}=k, r_{2}=\cdots=r_{k-1}=1, r_{k}=\cdots=r_{m-1}=2, r_{m}=1, c_{1}=$ $1, c_{2}=\cdots=c_{m}=2$. Take

$$
\begin{gather*}
R_{1}=\left[\begin{array}{ccc}
* & \cdots & * \\
\vdots & \vdots & \vdots \\
* & \cdots & *
\end{array}\right]_{k \times k}, \\
R_{2}=\cdots=R_{k-1}=R_{m}=C_{m}=[*], \tag{4}\\
R_{k}=\cdots=R_{m-1}=C_{2}=\cdots=C_{m}=\left[\begin{array}{cc}
* & * \\
* & *
\end{array}\right] . \tag{5}
\end{gather*}
$$

Then R_{i} 's and C_{j} 's are orthogonal patterns from Lemma 2.1. And since A_{k} has a connected bipartite graph, the resulting woven matrix $M\left(A_{k}\right)$ is fully indecomposable $(2 m-1) \times(2 m-1)$
orthogonal pattern from Lemma 3.1, and has the following form:

Thus

$$
\begin{aligned}
\#\left(M\left(A_{k}\right)\right) & =k(2 k-1)+2(k-2)+4(n-k-(k-2)-1)+2 \\
& =4 n-4+\left(2 k^{2}-7 k+6\right)
\end{aligned}
$$

Remark 3.2. If $k=2$ in (3) then $\#\left(M\left(A_{k}\right)\right)=4 n-4$ and $M\left(A_{2}\right)$ is an unique orthogonal pattern for an odd n as noted in [BBS].

Note that if we fix the matrices R_{i} 's $(i \neq 1)$ and C_{j} 's in (4) and (5) then $\#\left(M\left(A_{k}\right)\right)$ depends on $k \times k$ orthogonal pattern R_{1}. Now, fix R_{i} 's $(i \neq 1)$ and C_{j} 's in (4) and (5), and suppose R_{1} has a zero entry. Let x_{i} denote the number of zero entries in the i th column of R_{1}. Then it is clear that

$$
\begin{equation*}
\#\left(M\left(A_{k}\right)\right)=4 n-4+\left(2 k^{2}-7 k+6\right)-\left(x_{1}+2 x_{2}+2 x_{3}+\cdots+2 x_{k}\right) \tag{6}
\end{equation*}
$$

Lemma 3.3. For an integer $k \geq 3$, let x_{i} be an integer such that

$$
0 \leq x_{i} \leq k-i-1, \quad(i=1,2, \ldots, k-2)
$$

Then the linear system

$$
\begin{equation*}
x_{1}+2 x_{2}+\cdots+2 x_{k-2}=t \quad \text { with } \quad x_{1} \geq \cdots \geq x_{k-2} \tag{7}
\end{equation*}
$$

has a solution for each $t=0,1, \ldots, k^{2}-4 k+4$.
Proof. Let $\mathbf{x}(t)=\left(x_{1}, x_{2}, \ldots, x_{k-2}\right)$ be a solution of (7). Clearly, for each integer t with $0 \leq t \leq k-2, \mathbf{x}(t)=(t, 0, \ldots, 0)$ is a solution of (7). We suppose that $t \geq(k-2)+1$, and let

$$
\rho(l)=k-2+2 \sum_{i=3}^{l}(k-i) \quad(l=3,4, \ldots, k-1) .
$$

Then it is easily shown that

$$
\left\{\begin{array}{l}
\mathbf{x}(k-2+2 m-1)=(k-3, m, 0, \ldots, 0) \text { and } \\
\mathbf{x}(k-2+2 m)=(k-2, m, 0, \ldots, 0) \\
\text { for each } m=1,2, \ldots, k-3 \text { if }(k-2)+1 \leq t \leq \rho(3), \\
\mathbf{x}(\rho(3)+2 m-1)=(k-3, k-3, m, 0, \ldots, 0) \text { and } \\
\mathbf{x}(\rho(3)+2 m)=(k-2, k-3, m, 0, \ldots, 0) \\
\text { for each } m=1,2, \ldots, k-4 \text { if } \rho(3)+1 \leq t \leq \rho(4), \\
\mathbf{x}(\rho(4)+2 m-1)=(k-3, k-3, k-4, m, 0, \ldots, 0) \text { and } \\
\mathbf{x}(\rho(4)+2 m)=(k-2, k-3, k-4, m, 0, \ldots, 0) \\
\text { for each } m=1,2, \ldots, k-5 \text { if } \rho(4)+1 \leq t \leq \rho(5), \\
\ldots \\
\mathbf{x}(\rho(k-3)+2 m-1)=(k-3, k-3, k-4, \ldots, k-(k-3), m, 0) \text { and } \\
\mathbf{x}(\rho(k-3)+2 m)=(k-2, k-3, k-4, \ldots, k-(k-3), m, 0) \\
\text { for each } m=1,2, \ldots, k-(k-2) \text { if } \rho(k-3)+1 \leq t \leq \rho(k-2), \\
\mathbf{x}(\rho(k-2)+2 m-1)=(k-3, k-3, k-4, \ldots, k-(k-2), m) \text { and } \\
\mathbf{x}(\rho(k-2)+2 m)=(k-2, k-3, k-4, \ldots, k-(k-2), m) \\
\text { for each } m=1,2, \ldots, k-(k-1) \text { if } \rho(k-2)+1 \leq t \leq \rho(k-1)=k^{2}-4 k+4
\end{array}\right.
$$

is a solution of (7) for each $t=(k-2)+1, \ldots, k^{2}-4 k+4$. Thus the proof is complete.
¿From Lemma 2.1, for each $k \times k$ pattern \mathcal{L} in echelon form, we know that $\mathcal{L}+\mathcal{U}$ is a fully indecomposable $k \times k$ orthogonal pattern. We take R_{1} as $\mathcal{L}+\mathcal{U}$. Then $x_{k-1}=x_{k}=0$. Thus from Lemma 3.3, we may take a solution $\mathbf{x}(t)=\left(x_{1}, x_{2}, \ldots, x_{k-2}, 0,0\right)$ with the same values $x_{1}, x_{2}, \ldots, x_{k-2}$ as ones in the proof of Lemma 3.3 to the system $x_{1}+2 x_{2}+\cdots+2 x_{k}=t$ for each $t=0,1, \ldots, k^{2}-4 k+4$. This implies that there is a fully indecomposable $k \times k$ orthogonal pattern R_{1} such that $x_{1}+2 x_{2}+\cdots+2 x_{k}=t$ for each $t=0,1, \ldots, k^{2}-4 k+4$.

We denote $R(t):=R_{1}=\mathcal{L}+\mathcal{U}$ such that $x_{1}+2 x_{2}+\cdots+2 x_{k}=t$, and for a suitable pattern \mathcal{L}.

For example, let $k=5$. Then $R(0)=\left[*^{\prime} s\right]$, and

$$
R(1)=\left[\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
0 & * & * & * & *
\end{array}\right], R(2)=\left[\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
0 & * & * & * & * \\
0 & * & * & * & *
\end{array}\right], R(3)=\left[\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & * \\
0 & * & * & * & * \\
0 & * & * & * & * \\
0 & * & * & * & *
\end{array}\right],
$$

$$
\begin{aligned}
& R(4)=\left[\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
0 & * & * & * & * \\
0 & 0 & * & * & *
\end{array}\right], R(5)=\left[\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & * \\
0 & * & * & * & * \\
0 & * & * & * & * \\
0 & 0 & * & * & *
\end{array}\right], R(6)=\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & * \\
* & * \\
0 & 0 & * \\
0 & * & * \\
0 & 0 & * \\
* & *
\end{array}\right], \\
& R(7)=\left[\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & * \\
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & * & * & *
\end{array}\right], R(8)=\left[\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & *
\end{array}\right], R(9)=\left[\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & * \\
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & *
\end{array}\right] .
\end{aligned}
$$

Note that

$$
R\left(k^{2}-4 k+4\right)=\left[\begin{array}{ccccc}
* & * & \cdots & * & * \\
* & * & \cdots & * & * \\
0 & * & \ddots & * & * \\
\vdots & \ddots & \ddots & * & * \\
0 & \cdots & 0 & * & *
\end{array}\right]
$$

And also, we show that there is a fully indecomposable $k \times k$ orthogonal pattern $R(t)$ for each $t=k^{2}-4 k+5, \ldots, k^{2}-3 k+2$. This will be done from $R\left(k^{2}-4 k+4\right)$ by the following consecutive way:

In order to get $R\left(k^{2}-4 k+5\right)$, permute the column 1 and column 2 of $R\left(k^{2}-4 k+4\right)$, and to get $R\left(k^{2}-4 k+6\right)$, permute the column 1 and column 3 of $R\left(k^{2}-4 k+4\right)$, and so on, and finally in order to get $R\left(k^{2}-3 k+2\right)$, we permute the column 1 and column $k-1$ of $R\left(k^{2}-4 k+4\right)$. Then for each $t=k^{2}-4 k+5, \ldots, k^{2}-3 k+2, R(t)$ is still fully indecomposable $k \times k$ orthogonal pattern.

For example, let $k=5$. Then

$$
R(10)=\left[\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & * \\
* & 0 & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & *
\end{array}\right], R(11)=\left[\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & 0 & * & * \\
* & 0 & 0 & * & * \\
0 & 0 & 0 & * & *
\end{array}\right], R(12)=\left[\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & 0 & * \\
* & 0 & * & 0 & * \\
* & 0 & 0 & 0 & *
\end{array}\right] .
$$

Thus we have shown the following lemma.
Lemma 3.4. Let $n=2 m-1$. For $k=2,3, \ldots, m$, there exists a fully indecomposable $n \times n$ orthogonal pattern with p nonzero entries such that

$$
\begin{equation*}
4 n-4+\left(k^{2}-4 k+4\right) \leq p \leq 4 n-4+\left(2 k^{2}-7 k+6\right) \tag{8}
\end{equation*}
$$

In (8), we should note that

$$
\begin{aligned}
p=4 n-4 & \text { if } k=2 \\
4 n-3 \leq p \leq 4 n-1 & \text { if } k=3 \\
4 n \leq p \leq 4 n+6 & \text { if } k=4 \\
4 n+5 \leq p \leq 4 n+17 & \text { if } k=5 \\
\cdots & \\
\frac{n^{2}+10 n-7}{4} \leq p \leq \frac{n^{2}+3 n-2}{2} & \text { if } k=m .
\end{aligned}
$$

In particular, for $k-1$, since

$$
4 n-4+\left(k^{2}-6 k+9\right) \leq p \leq 4 n-4+\left(2 k^{2}-11 k+15\right)
$$

we get

$$
2 k^{2}-11 k+15-\left(k^{2}-4 k+4\right)=k^{2}-7 k+11>0 \quad \text { for } \quad k \geq 5
$$

Thus there are orthogonal patterns with the same number of nonzero entries which are overlapped between $k-1$ and k for $k \geq 5$. The following theorem is an immediate consequence of Theorem 2.2 and Lemma 3.4.

ThEOREM 3.5. For each integer p with $4 n-4 \leq p \leq n^{2}$, if n is an odd number then there exists a fully indecomposable $n \times n$ orthogonal matrix with exactly p nonzero entries.

Now we only need to consider the even n case. If $n=2$ or 4 then from Lemma 2.1, there exists a fully indecomposable $n \times n$ orthogonal matrix with exactly p nonzero entries such that $4 n-4 \leq p \leq n^{2}$. Thus we may assume that $n=2 m \geq 6$.

For each $k=2, \ldots, m$, we define the $m \times(m+1)(0,1)$-matrix $A_{k}^{\prime}=\left[a_{i j}\right]$ with row sums $r_{1}, r_{2}, \ldots, r_{m}$ and column sums $c_{1}, c_{2}, \ldots, c_{m+1}$ by

$$
a_{i j}=\left\{\begin{array}{cc}
1 & \text { if } i=j ; i=1 \text { and } j=2, \ldots, k \\
& j=i+1 \text { for } i=k, \ldots, m \\
0 & \text { otherwise }
\end{array}\right.
$$

That is,

For $k=m+1$, define

$$
A_{m+1}^{\prime}=\left[\begin{array}{cccccc}
1 & 1 & \cdots & 1 & 1 & 1 \\
& 1 & & & & \\
& & \ddots & & O & \\
& O & & 1 & & \\
& & & & 1 & 0
\end{array}\right]
$$

Thus $\#\left(A_{k}^{\prime}\right)=\#\left(A_{m+1}^{\prime}\right)=2 m$, and for $k=2, \ldots, m$,

$$
r_{1}=k, r_{2}=\cdots=r_{k-1}=1, r_{k}=\cdots=r_{m}=2, c_{1}=1, c_{2}=\cdots=c_{m}=2, c_{m+1}=1
$$

If we take R_{i} 's and C_{j} 's as full orthogonal patterns of the order r_{i} and c_{j} for each $i, j=$ $1,2, \ldots, m$ and $j=m+1$, then the resulting woven matrix $M\left(A_{k}^{\prime}\right)$ has the form

Thus

$$
\begin{aligned}
\#\left(M\left(A_{k}^{\prime}\right)\right) & =k(2 k-1)+2(k-2)+4(n-k-(k-2)-2)+6 \\
& =4 n-4+\left(2 k^{2}-7 k+6\right)
\end{aligned}
$$

and

$$
\#\left(M\left(A_{m+1}^{\prime}\right)\right)=(m+1) n+2(n-m-1)=\frac{n^{2}+4 n-4}{2}
$$

REMARK 3.6. If $k=2$ in (9) then $\#\left(M\left(A_{k}^{\prime}\right)\right)=4 n-4$ and $M\left(A_{2}^{\prime}\right)$ is a unique orthogonal pattern for an even n as noted in [BBS].

Now, for a $k \times k$ orthogonal pattern R_{1} with a zero entry, let x_{i} denote the number of zero entries in the i th column of R_{1}. Then for full orthogonal patterns $R_{i}(i \neq 1)$ and C_{j}, we get

$$
\#\left(M\left(A_{k}^{\prime}\right)\right)=4 n-4+\left(2 k^{2}-7 k+6\right)-\left(x_{1}+2 x_{2}+2 x_{3}+\cdots+2 x_{k}\right)
$$

If we apply the similar method which was used in the previous odd n for A_{k}^{\prime} in (9), we can show that there is a fully indecomposable $n \times n$ orthogonal pattern with p nonzero entries for each p such that

$$
4 n-4 \leq p \leq \frac{n^{2}+n+4}{2}
$$

Thus from (2), it is sufficient to show that there is a fully indecomposable $n \times n$ orthogonal pattern with p nonzero entries for each p such that

$$
\begin{equation*}
\frac{n^{2}+n+4}{2}+1 \leq p \leq \frac{n^{2}+3 n-2}{2}-1 \tag{10}
\end{equation*}
$$

In order to construct those, we shall use A_{m+1}^{\prime} as a lattice of weaving. For a fully indecomposable $(m+1) \times(m+1)$ orthogonal pattern R_{1} with a zero entry, let x_{i} denote the number of zero entries in the i th column of R_{1}. And we take the full orthogonal patterns $R_{i}(i \neq 1)$ and C_{j}. Then it can be easily shown that

$$
\#\left(M\left(A_{m+1}^{\prime}\right)\right)=\frac{n^{2}+4 n-4}{2}-\left(x_{1}+2 x_{2}+2 x_{3}+\cdots+2 x_{m}+x_{m+1}\right) .
$$

For $x_{1}+2\left(x_{2}+\cdots+x_{m}\right)+x_{m+1}=t$, let $R(t)$ denote an $(m+1) \times(m+1)$ orthogonal pattern obtained with the similar method which was used in the previous odd n case. Then it is shown similarly that there are fully indecomposable orthogonal patterns

$$
R(0), R(1), \ldots, R\left((m-1)^{2}\right)=R\left(\frac{n^{2}-4 n+4}{4}\right) .
$$

It follows that there is a fully indecomposable $n \times n$ orthogonal pattern with p nonzero entries for each p such that

$$
\begin{equation*}
\frac{n^{2}+12 n-12}{4} \leq p \leq \frac{n^{2}+4 n-4}{2} \tag{11}
\end{equation*}
$$

From (10), (11), since

$$
\frac{n^{2}+n+4}{2}+1-\frac{n^{2}+12 n-12}{4}=\frac{(n-4)(n-6)}{4} \geq 0 \text { if } n \geq 6
$$

and

$$
\frac{n^{2}+4 n-4}{2}-\frac{n^{2}+3 n-2}{2}+1=\frac{n-4}{2}>\text { if } n \geq 6
$$

we have the following theorem.
ThEOREM 3.7. For each integer p with $4 n-4 \leq p \leq n^{2}$, if n is an even number then there exists a fully indecomposable $n \times n$ orthogonal matrix with exactly p nonzero entries.

This leads us to the existence theorem of orthogonal matrix as following.
THEOREM 3.8. For each integer p with $4 n-4 \leq p \leq n^{2}$, there exists a fully indecomposable $n \times n$ orthogonal matrix with exactly p nonzero entries.

Proof. This follows from Theorem 3.5 and 3.7.

REFERENCES

[BBS] L. B. Beasley, R. A. Brualdi and B. L. Shader, Combinatorial Orthogonality, in Combinatorial and Graph-Theoretical Problems in Linear Algebra (R. A. Brualdi, S. Friedland and V. Klee, eds.), Springer-Verlag, 207-218, 1993.
[C] G.-S. Cheon, Sparse orthogonal matrices by weaving, Kangweon-Kyungki Math. J., V. 7(1),61-69, 1999.
[CS1] G.-S. Cheon and B. L. Shader, How sparse can a matrix with orthogonal rows be?, J. of Combinatorial Theory A, V. 85, 29-40, 1999.
[CS2] G.-S. Cheon and B. L. Shader, Constructions for the sparsest orthogonal matrices, Bulletin of Korean Math. Soc., V. 39(1), 119-129, 1999.
[CJLP] G.-S. Cheon, C. R. Johnson, S.-G. Lee and E. J. Pribble, The Possible numbers of zeros in an orthogonal matrix, Elec. J. of Linear Algebra. V. 5, 19-23, 1999.
[Cr] R. Craigen, The craft of weaving matrices, Congressus Numerantium 92, 9-28, 1993.
[HJOD] D. R. Hare, C. R. Johnson, D. D. Olesky and P. Van Den Driessche, Sparsity analysis of the QR factorization, SIAM J. Matrix Anal. Appl., 14(3), 655-669, 1993.

Department of Mathematics, Daejin University, Pocheon 487-711, Korea

Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea, sglee@yurim.skku.ac.kr

Department of Mathematics, Cheju National University, Cheju 690-756, Korea

[^0]: This work was supported by Brain Korea 21 Project.
 1991 Mathematics Subject Classification. :Primary 05A15, 15A36, 15A57: Secondary 65F25.
 Key words and phrases. :Orthogonal pattern, symbolic Gram-Schmidt procedure, weaving, woven matrix, lattice.

