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ISSUES OF ESTIMATION IN THE MONITORING OF

CONSTANT FLOW CONTINUOUS STREAMS

N. S. BARNETT AND S. S. DRAGOMIR

Abstract. This paper deals with some fundamental matters pertaining to estima-

tion of critical quantities associated with continuous processes which are frequently

related to the quality rating of the product. Speci�cally, it examines bounds on esti-

mation and bounds on the estimation error variance. It draws on recent results from

the theory of mathematical inequalities and their applications.

1. Introduction

In the application of statistical techniques to the monitoring and control of industrial

processes it is possible to identify two classes of processes - discrete and continuous.

A large body of statistical work has been accumulated and disseminated dealing with

discrete processes and, frequently, continuous processes are treated as if, in fact, they

were discrete. However, this latter approach is not always advisable.

In collecting data from a continuous process, scrutiny will frequently show it to be

correlated, which, in general, necessitates a di�erent approach being taken to analysis

and interpretation than is generally taken for discrete processes. Discrete processes are

characterized by the availability of data which is often times uncorrelated. Discrete

processes are generally controlled on the basis that they can be maintained in a state

of control. Techniques used and actions taken to correct perceived problems are heavily

dependent on this assumption which implies the pre-eminence of the Gaussian (Normal)

distribution.

Continuous processes are frequently unable to be controlled in the sense that discrete

ones can and sensible approaches to assessment and control draw on more sophisti-

cated statistical techniques. Frequent re-course is made to pre-programmed automated

controllers that continually adjust the process to meet stipulated requirements. Such

controllers require certain assumptions to be made and need to be properly tuned if

they are to obtain appropriate outcomes.

In any process, whether discrete or continuous, data needs to be collected carefully

and assumptions drawn with caution so that appropriate techniques of analysis are

engaged. Only then is there a likelihood that sound judgements will be made in relation

to monitoring, control and quality assessment of the product.
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Industrial processes that are classi�ed as continuous are prevalent in the chemical

industry. A continuous process deals with products that are not identi�able as discrete

entities. Typically, product is liquid, gaseous or �ne granular in nature and an item

of product only exists in relation to containers in which it is stored or despatched.

Chemical processes are infamous for having aspects that defy explanation and for being

sensitive to apparently insigni�cant changes in parameters. These all present their own

peculiar set of problems and di�culties.

This paper deals with some fundamental matters pertaining to estimation of critical

quantities associated with continuous processes and which are frequently related to

the quality rating of the product. Speci�cally, it examines bounds on estimation and

bounds on the estimation error variance. It draws on recent results from the theory of

mathematical inequalities and their applications.

2. Practical Considerations

In sampling a continuous stream with a view to quality assessment, it is generally

necessary to estimate the average ow quality, �X; of the stream over a particular time

by taking a number of `grab' samples that return values x1; x2; x3; :::; xn and which are

collected within the same time frame. These are assembled into an average �x which

is then used to estimate �X: Subsequent quantities that are of some interest include�� �X � �xn
�� ; E

�� �X � �xn
�� and E

�
�X � �xn

�2
which are respectively the estimation error,

the expectation of the estimation error and the estimation error variance. The �rst is

a purely mathematical quantity but the latter two contain information related to the

stochastic nature of the process.

`Grab' samples are frequently a small container of product assumed collected in

an instant during or at the conclusion of manufacture. Sometimes, however, a single

sample may take an appreciable time to collect. Under these latter circumstances, a

single sample can be reasonably considered, itself, a direct measure of average ow so

that we are, in e�ect, estimating the average ow in say (0; T ) ; �X (T ) by the average

ow in say (s; s+ p) ; 0 < s+ p < T; �X (p) :

Estimation of
�� �X � �xn

�� ; E
�� �X � �xn

�� and E
�
�X � �xn

�2
; and for this latter case,

E
�
�X (T )� �X (p)

�
; relate to the veracity of making judgements on the basis of �xn

and so, in this respect, have some importance. Factors which have an impact on them,

include the magnitude of n; the times at which the samples are taken and, for the

latter two, the intrinsic nature of the continuous stream itself. This latter includes its

stochastic behaviour and the ow rate of the stream, if this, in fact, varies [1].

One approach to characterizing the stochastic behaviour of the stream is to describe

it by its variogram. For a process with a stationary variogram, this is de�ned as:-

V (u) =
1

2
E
h
(X (t)�X (t+ u))2

i
;

where, for current purposes, X (t) is assumed to be a stochastic process continuous over

time, with

V (0) = 0 and V (�u) = V (u) :
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3. Previous Work

Whilst, in general, the average ow `quality', �X (t) over a time period (0; T ) will

be estimated by a sample average, �Xn; when this procedure is examined more closely

it is apparent that each sample point can be considered to estimate the average ow

in its immediate neighborhood. This being the case, in seeking to establish the most

appropriate points at which to sample, it is reasonable to consider E
h�

�X �X (t)
�2i

where t is a single sampling time (assumed instantaneous). Barnett et al [1] did this

and obtained optimal times at which to sample in order to minimize the estimation

error variance for particular ow rates and variograms. In [2], Barnett and Dragomir

obtained bounds for the same quantity for a class of variograms and constant ow rate.

In so doing, they used a recent development of Ostrowski's integral inequality [3]. The

class of variograms for which there exists such an inequality was extended to the H�older

type by Barnett, Dragomir and Gomm [4].

This current paper obtains a bound for the estimation error when sampling is not

instantaneous, gives a bound for the estimation error variance when sampling is instan-

taneous and illustrates how the sample size can be determined by stipulations on this

error variance.

4. Estimation Error

In [5], the authors prove the following inequality for a di�erentiable function�����
Z

b

a

f (x) dx�

n�1X
i=0

f (�i) hi

����� �

f 0
1

n�1X
i=0

"
h2
i

4
+

�
�i �

xi + xi+1

2

�2#

�

kf 0k
1

2

n�1X
i=0

h2
i
;

where kf 0k
1

:= supt2(a;b) jf
0 (t)j < 1; a = x0 < x1 < ::: < xn�1 < xn = b is an

arbitrary partition of [a; b] and hi = xi+1 � xi; �i 2 [xi; xi+1] ; i = 0; 1; 2; :::; n � 1:

If, for current purposes, f (t) is chosen to be the stochastic processX (t) ; then clearly
�X = 1

T

R
T

0
X (t) dt and �Xn = 1

n

P
n

i=1Xi: Thus, taking b = T; a = 0; �i =
xi+xi+1

2
and

xi = i� T

n
; it is possible to obtain

�� �X (T )� �Xn

�� =

����� 1T
Z

T

0

X (t) dt�
1

n

n�1X
i=0

Xti

�����
�

kX 0 (t)k
1
T

2n
;

which provides an upper bound for the estimation error for a particular class of vari-

ograms ( �X (T ) is being used equivalently for �X when the time duration is being em-

phasized).
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For the case where sampling is not instantaneous, the estimation error can be con-

sidered to be �� �X (T )� �X (p)
�� ;

where

�X =
1

T

Z
T

0

X (t) dt;

as previously, and

�X (p) =
1

p

Z
s+p

s

X (t) dt;

where s is the time at which sampling commences and s+ p is the time at which it is

complete. To obtain a bound for the error, we require a further extension of Ostrowski's

inequality given by the following lemma.

Lemma 1. If f : [a; b]! R is an absolutely continuous mapping on [a; b] ; [c; d] � [a; b]

and f 0
1

:= sup
t2(a;b)

��f 0 (t)�� <1;

then ���� 1

b� a

Z
b

a

f (t) dt�
1

d� c

Z
d

c

f (s) ds

����
�

(
1

4
(b� a) +

(d� c)

2
+

1

b� a

�����c+ d

2
�

a+ b

2

����� d� c

2

�2)f 0
1

:

Proof. Ostrowski's inequality for absolutely continuous mappings is����f (x)� 1

b� a

Z
b

a

f (t) dt

���� � f 01
2
41
4
+

 
x� a+b

2

b� a

!2
3
5 (b� a)

for all x 2 [a; b] :

By the triangle inequality we have:���� 1

b� a

Z
b

a

f (t) dt�
1

d� c

Z
d

c

f (s) ds

����
�

����f (x)� 1

b� a

Z
b

a

f (t) dt

����+
����f (x)� 1

d� c

Z
d

c

f (s) ds

����
�

"
1

4
+

�
x� a+b

2

�2
(b� a)2

#
(b� a)

f 0
1

+

"
1

4
+

�
x� c+d

2

�2
(d� c)2

#
(d� c)

f 0
1

for all x 2 [c; d] � [a; b] :

Right hand side is

1

4

f 0
1

(b� a+ d� c) +
f 0

1

"�
x� a+b

2

�2
(b� a)

+

�
x� c+d

2

�2
(d� c)

#
:
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If this is denoted by h (x) ; it is apparent that

inf
x2[c;d]

h (x) = min fh (c) ; h (d) ; h (u)g ;

where u is the turning point of

y =
1

4
(b� a+ d� c) +

�
1

b� a
+

1

d� c

�
x2

�

�
a+ b

b� a
+
c+ d

d� c

�
x+

1

b� a

�
a+ b

2

�2
+

1

d� c

�
c+ d

2

�2
:

So ���� 1

b� a

Z
b

a

f (t) dt�
1

d� c

Z
d

c

f (s) ds

���� � min fh (c) ; h (d) ; h (u)g :

Now,

minfh (c) ; h (d)g =
1

4

f 0
1

(b� a+ d� c) +
f 0

1

(d� c)

4

+
kf 0k

1

b� a
min

(�
c�

a+ b

2

�2
;

�
d�

a+ b

2

�2)
:

Simplifying,

min

(�
c�

a+ b

2

�2
;

�
d�

a+ b

2

�2)
;

observe that this is:

1

2

"�
c�

a+ b

2

�2
+

�
d�

a+ b

2

�2
�

�����
�
c�

a+ b

2

�2
�

�
d�

a+ b

2

�2�����
#

=
1

4
(d� c)2 +

�
a+ b

2
�

c+ d

2

�2
�

1

2
j(c� d) (c+ d� (a+ b))j

=
1

4
(d� c)2 +

�
a+ b

2
�

c+ d

2

�2
� (d� c)

����c+ d

2
�

a+ b

2

���������c+ d

2
�

a+ b

2

����� d� c

2

�2
;

and so ���� 1

b� a

Z
b

a

f (t) dt�
1

d� c

Z
d

c

f (s) ds

����
�

f 0
1

(
1

4
(b� a) +

�
d� c

2

�
+

1

b� a

�����c+ d

2
�

a+ b

2

����� d� c

2

�2)

as required, since

min fh (c) ; h (d) ; h (u)g � min fh (c) ; h (d)g :
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For application of this result to estimation of the mean ow quality, take a = 0; b = T

and c = s; d = s + p with s + p < T; with respect to the time, s; at which sampling

commences it is interesting to note that with reference to the mid point of the time

period over which it is desired to estimate �X; (0; T ) ; if sampling commences at the

midpoint, i.e., s = T

2
; the bound is�

s+ p

2

�X 0 (t)

1

:

If sampling concludes at the midpoint, i.e., s+ p = T

2
; the bound is�

2s+ 3p

4

�X 0 (t)

1

and the tightest bound is provided when sampling is symmetrical about the mid point

of the time period, that is,
T

2
=

2s+ p

2
;

in which case the bound is:-�� �X (T )� �X (p)
�� � �T + p

4

�X 0 (t)

1

:

5. Estimation Error Variance- Instantaneous Sampling

By application of the cubature formula in [3], and using the approach given in [4],

it can be shown that for instantaneous sampling and estimation of the average of the

continuous ow by sample average:

E
h�

�X � �Xn

�2i
�

d2

4

V 00


1

;

provided the variogram is twice di�erentiable in (�d; d) and where instantaneous sam-

ples are taken at d

2
; 3d
2
; :::;

(2n�1)d
2

; T = nd:

The problem of sample size for the assessment of a continuous stream may well

be resolved by restricting E
h�

�X � �Xn

�2i
and obtaining the smallest integer n that

satis�es the restriction. This is illustrated for the case where the variogram is linear.

Set the condition E
h�

�X � �Xn

�2i
�M: It can be shown [6] that

E
h�

�X � �Xn

�2i

= �

1

n2

nX
i=1

nX
j=1

V (ti � tj)�
1

T 2

Z
T

0

Z
T

0

V (u� v) dudv

+
2

nT

Z
T

0

nX
i=1

V (u� ti) du

where ti are the times at which instantaneous samples are taken.
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These are assumed to be equidistant apart since for a constant owing stream this

procedure has been shown to be optimal [1]. Hence ti =
(2i�1)

2
d; i = 1; :::; n:

It can be shown further that

�

1

n2

nX
i=1

nX
j=1

V (ti � tj)

=
�2

n2
f(n� 1) V (d) + (n� 2) V (2d) + :::+ V ((n� 1) d)g

=
�2

n2

�
(n� 1) V

�
T

n

�
+ (n� 2) V

�
2T

n

�
+ :::+ V

�
(n� 1)

T

n

��
:

Now, for the case of a linear variogram we have:-

V (u) = A+Bu;

where for the current application we would expect both A;B > 0:

1

n2

nX
i=1

nX
j=1

V (ti � tj)

then simpli�es down to

�A (n� 1)

n
�

BT (n� 1) (n+ 1)

3n2
;

�
1
T 2

R
T

0

R
T

0
V (u� v) dudv simpli�es to �A; and 2

nT

R
T

0

P
n

i=1 V (u� ti) du simpli�es to

2A:

The sample size sought is then the smallest n such that

�A (n� 1)

n
�

BT (n� 1) (n+ 1)

3n2
+A �M;

which essentially reduces to solving a quadratic for which the solution is:-

n =
3A+

p
9A2 + 4 (3M +BT )BT

2 (3M +BT )
:
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