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Abstract

A method for inverting the Laplace transform is presented, using a �nite series
of the classical Legendre polynomials. The method recovers a real-valued function
f(t) in a �nite interval of the positive real axis when f(t) belongs to a certain
classW� and requires the knowledge of its Laplace transform F (s) only at a �nite

number of discrete points on the real axis s > 0. The choice of these points will
be carefully considered so as to improve the approximation error as well as to
minimize the number of steps needed in the evaluations. The method is tested
on few examples, with particular emphasis on the estimation of the error bounds
involved.

Introduction:

The Laplace transform F (s) of a real-valued function f(t) with f(t) = 0 for t < 0,

if it exists, is de�ned by the integral

F (s) =

Z
1

0

e�stf(t)dt: (1)

The signi�cance of numerical Laplace inversion is obvious from the big range of

applications. Unfortunately, the problem of inverting the Laplace transform is severely

ill-posed and highly instable. A number of numerical inversion methods have been

developed during the last few decades, and discussed in the mathematical literature

[1, 2, 3]. We shall con�ne ourselves to a class of functions W�, to be de�ned later, for

which our proposed method can be shown to be accurate and of rapid convergence.

The Class W�:

Let f(t) be de�ned at each point of the positive real axis. Then for � > 0, the

following change of variable will map the interval [0;1) to the interval [�1; 1].
x : [0;1)! [�1; 1]
x(t) = 1� 2e��t

t : [�1; 1]! [0;1)

t(x) = � ln
�
1�x
2

�
�

:
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Given f(t), de�ne

h(t) = e��tf(t); for arbitrary � > � > 0

g(x) = h

 
� ln

�
1�x
2

�
�

!
:

In other words g(x) =
�
1�x
2

	�
� f
�� 1

�
ln
�
1�x
2

��
. De�ne the class W� to be the set of

all real-valued functions f(t) with f(t) = 0 for t < 0 for which g(x) as de�ned above

has a derivative of bounded variation, i.e.

W� = ff=V 1
�1g

0(x) <1g;

where V 1
�1g

0(x) is the total variation of g0 over [�1; 1].
Remark 1: If f(t) 2 W�, then the corresponding g(x) is bounded and absolutely

continuous.

At the �rst glance, one may think that our hypothesis above is too restrictive and

yields a relatively small class of functions for practical purposes. On the contrary, the

following lemma will show that our class W� is a large one indeed.

The Class D�:

De�ne the class D� to be the set of all real-valued functions de�ned at each point

of the positive real axis and satisfy

(i) f(t) is twice continuously di�erentiable in [0;1),

(ii) for every f(t); 9 c > 0 and � 2 R such that jf 00(t)j < ce�t for t � 0.

D� � ff(t) 2 C2[0;1); sup
t�0

jf 00(t)e��tj <1g:

Lemma: Let � > maxf�; � + �g, where � > 0, then D� � W�.

Proof: The di�erentiability of the associated g(x) de�ned above follows immediately

from part (i), and we only prove that g0(x) is of bounded variation. For this, it su�ces

to show that g00(x) is absolutely integrable in [�1; 1]. Now, changing variables again

yields Z 1

�1

jg00(x)jdx =
1

2�

Z
1

0

jf�(� � �)f(t) + (�� 2�)f 0(t) + f 00(t)ge(���)tjdt: (�)

This equation requires bounds for jf 0j and jf j, and to obtain such estimates, we observed

that part (i) implies the existence of f(0+) and f 0(0+).

De�ne

y(t) = f(t)� tf 0(0+)�f(0+): (2)
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Hence,

y00(t) = f 00(t)

y0(t) = f 0(t)� f 0(0+)

y0(0+) = y(0+) = 0:

Now, consider the following cases:

Case (i): � = 0; i.e., jf 00(t)j = jy00(t)j � c.

Integrating both sides of the inequality �c � y00(t) � c yields,

jy0(t)j � ct

jy(t)j � c

2
t2

9>>>=
>>>;

(3)

Using equation (�) together with (2) and (3) impliesZ 1

�1

jg00(x)jdx � 1

2�(� � �)2

�
(� � �)

���(�� 2�)f 0(0+) + �(� � �)f(0+)
��+ c

	
+ c� + c(2� � �) + �(� � �)jf 0(0+)j� (4)

Case (ii): j�j > 0, i.e., jy00(t)j � ce�t.

Again, interchanging both sides of the inequality �ce�t � y00(t) � ce�t

jy0(t)j � c

�

�
e�t � 1

�

jy(t)j � c

�2

�
e�t � �t� 1

�

9>>>=
>>>;

(5)

Putting (2) and (5) in equation (�) yieldsZ 1

�1

jg00(x)jdx � �2j�(� � �)f(0+) + (�� 2�)f 0(0+)j � c�(� � �)� c�(2� � �)

2��2(� � �)

+
��(� � �)jf 0(0+)j � c�(� � �)

2��(� � �)2

+
c�(� � �) + �c(2� � �) + �2c

2��2(� � �� �)
: (6)

Since we know that the total variation of g0(x) in [�1; 1] cannot exceed
Z 1

�1

jg00(x)jdx,
the lemma is proved.
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Before we state our proposed method for inverting the Laplace transform of a given

function belonging to the class W�, we �nd the following discussion quite helpful.

Series and Asymptotics of Legendre Polynomials

For any g(x) 2 L2[�1; 1], we can have the following Legendre polynomials expansion

g(x) �=
X
n�0

anPn(x) for x 2 [�1; 1] (7)

where

an =
2n+ 1

2

Z 1

�1

g(x)Pn(x)dx

Pn(x) =

nX
k=0

(�1)k(n+ k)!

(n� k)!(k!)2

�
1� x

2

�k

: (8)

The series
X
n�0

anPn(x) is called the Legendre series of g(x) and we can assert that if

g(x) is square integrable in [�1; 1], then this series converges in the mean in [�1; 1] to
g(x).

We can also a�rm that if g(x) is continuous in [�1; 1] and its Legendre series is

uniformly convergent there, then

g(x) �
X
n�0

anPn(x); for x 2 [�1; 1]: (9)

We list below an important approximation formula, to be used later for computational

purposes, with the help of which we can signi�cantly minimize the number of steps

needed in our computation as well as the error involved.

Jackson's Theorem [4; p. 205]:

Let w(x) be of bounded variation in [�1; 1], and let U and V denote respectively

the least upper bound of jw(x)j and the total variation of w(x) in [�1; 1]. Given the

function

g(x) = g(�1)+
Z

x

�1

w(x)dx; (10)

then the coe�cient an,

an =
2n+ 1

2

Z 1

�1

g(x)P (x)dx

of its Legendre series satisfy the inequality

janj <
4p
�
(U+V )

1

n3=2
; for n � 2: (11)
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Moreover, the Legendre series of g(x) converges uniformly and absolutely to g(x) in

[�1; 1]. The remainder of the series beginning with the (n + 1)-st term satis�es the

inequalities

jRn+1(x)j <
8p
�
(U + V )

1p
n
; for jxj � 1; n � 1 (12)

jRn+1(x)j <
16
p
2

�
� U + V

4
p
1� �2

� 1
n
; for jxj � � < 1; n � 1: (13)

The above discussions have furnished a good survey of the Legendre polynomials we

intend to use as tools for our approximation as well as full description of the class of

functions W� to which the approximated functions belong.

Now, we are in a position for departure for our main problem, namely, the con-

struction of the technique to be used for inverting the Laplace transform.

The Inversion of the Laplace Transform:

The Inversion Theorem: Given the Laplace transform F (s) for a real-valued function

f(t) 2 W�, and given � > 0, there exists an integer N such that

fa(t) =

NX
n=0

an ~Pn(t); for 0 � t0 � t � T <1

satis�es = sup
t0�t�T

jf(t)� fa(t) < � where,

an = �(2n+ 1)

nX
k=0

(�1)n�(1 + n+ k)

(n� k)!(k!)2
F (� + �+ �k)

~Pn(t) =

nX
k=0

(�1)n�(1 + n+ k)

(n� k)!(k!)2
e�(k���)t

and N can be chosen such that

N �
�
16e�T (U + V )

�
p
�

�2
; for t0 = 0 (14)

or,

N � 32
p
2e�T (U + V )

��
4
p
1� �2

; for t0 > 0: (15)

The second estimate for N can be used if the function f(t) is to be recovered in an

interval interior to [0;1), i.e., for t 2 [t0; T ] with t0 > 0 and T < 1. Then, � =

max
�j1� 2e��t0 j; j1� 2e��T j	. U and V represent respectively the least upper bound

of jg0(x)j and total variation of g0(x) in [�1; 1].
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Proof: We may assume without loss of generality that F (s) is de�ned for Re s > 0; a

simple translation in the imaginary axis can be done if this is not the case.

Now, let us follow the same notations and change of variables introduced earlier.

Put,

h(t) = e��tf(t); for � > � > 0

x = 1� 2e��t; for t � 0

g(x) = h

 
� ln

�
1�x
2

�
�

!
; for x 2 [�1; 1]:

Since f(t) 2 W�, Remark 1 implies that g(x) is the inde�nite integral of its deriva-

tive

g(x) = g(�1)+
Z

x

�1

g0(x)dx:

Now, with U and V being the least upper bound of jg0(x)j and the total variation of

g0(x) respectively, Jackson's theorem states that g(x) can be approximated by the �rst

N terms of its Legendre series in equation (8)

g(x) �=
NX
n=1

anPn(x); for x 2 [�1; 1]

where

Pn(x) =

nX
k=0

(�1)k�(1 + n+ k)

(n� k)!(k!)2

�
1� x

2

�k

an =
2n+ 1

2

Z 1

�1

g(x)Pn(x)dx

=
2n+ 1

2

Z
1

0

e��tf(t)Pn

�
1� 2e��t

��
2�e��t

�
dt:

= �(2n+ 1)

nX
k=0

(�1)k�(1 + n+ k)

(n� k)!(k!)2

Z
1

0

f(t)e�[�+�k]tdt

= �(2n+ 1)

nX
k=0

(�1)k�(1 + n+ k)

(n� k)!(k!)2
F (� + �+ �k):

Now, to show that our uniform error in approximating the original function f(t) by the

function fa(t) cannot exceed � in magnitude, we consider the following two cases:

Case (i): t0 = 0.
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Then, inequalities (13) and (15) give the remainder

jRN+1(x)j < e��T � �
2
; for x 2

h
�1; 1 � 2e��T

i
:

Hence,

g(x) =

NX
n=1

anPn(x)+RN+1(x); for x 2 [�1; 1]:

Putting x = 1� 2e��t we have

e��tf(t) =

NX
n=0

anPn

�
1� 2e��t

�
+RN+1

�
1� 2e��t

�

f(t) =

NX
n=0

an ~Pn(t) + e�tRN+1

�
1� 2e��t

�
:

If we put fa(t) =

NX
n=0

an ~Pn(t). Then,

max
0�t�T

jfa(t)�f(t)j = e�tRN+1(1�2e��t) <
�

2
:

Case (ii): t0 > 0:

Similarly inequalities (14) and (16) give the remainder

jRN+1(x)j < e��T � �
2

for x 2 [��; �]

where, � = max
�j1� 2e��t0 j; j1� 2e�T j	. Also, g(x) =

NX
n=0

anPn(x) � RN+1(x); for

x 2 [��; �]. Putting x = 1� 2e��t, for t 2 [t0; T ], we get

e��tf(t) =

NX
n=0

anPn(1� 2e��t) +RN+1(1� 2e��t)

f(t) =

NX
n=0

an ~Pn(t) + e�tRN+1(1� 2e��t):

If we put fa(t) =

NX
n=0

an ~Pn(t), then

max
t0�t�T

jf(t)�fa(t)j = e�tRN+1(1�2e��t) <
�

2
:
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This completes the proof.

The Choice of � and �:

In our numerical computations for functions belonging to the class D�, it is always

desirable to minimize the time and e�ort needed in the computation to achieve the

accuracy within the pre-assigned tolerance �. For this, let us denote the right sides of

the inequalities (4) and (6), standing for the total variation by V1(�; �) and V2(�; �)

respectively, and observe that for the least upper bound of g0(x) in [�1; 1 � 2��T ], we

have by inequalities (3) and (5) with � > maxf�; �+ �g

jg0(x)j � U1(�; �) =
cT

4�
[�T + 2]; for � = 0

jg0(x)j � U2(�; �) =
�c

2��

�
e�T � 1

�
+

c

2��2

�
e�T � �T � 1

�
; for j�j > 0:

Thus, we may take U and V in inequalities (14) and (15)

U = Ui(�; �) i = 1 or 2:

V = Vi(�; �) i = 1 or 2:

i = 1 or 2, depend on whether � in our class D� is zero or not respectively.

Now, we can pose the following optimization problem, responsible for minimizing

our integer N that determines the number of polynomials needed to achieve the desired

accuracy. The minimization is taken over �; �, and adopt the powerful computational

algorithm SUMT [6].

Minimize

e�T [Ui(�; �)+Vi(�; �)] i = 1 for 2

subject to

� > 0

� > maxf�; � + �g:

When this minimum is achieved, say at � = �opt and � = �opt, then we may take

U = Ui(�opt; �opt) and V = Vi(�opt; �opt) in our bounds (14) and (15). This gives an

optimal choice of N = Nopt, with which we can advance in our calculations.

Determination of c and �:

The problem arising in the optimization recommended above is the determination

of the best constants c and � needed there, when we only have the given function F (s)

in hand. For this, we recall the following theorem.
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Tauberian Theorem [5, p. 185]: If the function f(t) satis�es the inequality jf(t) <

Me�t for all t > 0, M being a positive constant, then

lim
s!1

sF (s) = f(0+):

Clearly, our function f(t) as it belongs to the class D� satis�es the hypothesis of

Tauberian theorem. This can be shown with the help of the inequalities (3) and (5).

Therefore, given F (s) we calculate the following limits involved in our bounds and

known to exist by the hypothesis of our class

f(0+) = lim
s!1

sF (s)

f(0+) = lim
s!1

s[sF (s)� f(0+)]

f(0+) = lim
s!1

s[s2F (s)� sf(0+)� f 0(0)]:

Now, we can use these limits to estimate lower bounds for c and �.

Since, jf 00(t)j � ce�t, it is immediate to see that

jf 00(0)j � c

js2F (s)� sf(0+)� f 0(0)j � c

s� �
; for s > �: (16)

If the left side of the above inequality, which is the Laplace transform of f 00(t) is di�erent

from zero, we have, for s > �

sjs2F (s)� sf(0+)� f 0(0)j � c

js2F (s)� sf(0+)� f 0(0+)j � �: (17)

In most cases, inequality (18) will provide a good estimate for � directly, otherwise we

need to estimate the maximum of the left side over all s > 0, and use it as a lower

bound for �.

If the procedure of determining lower bounds for � and c is too di�cult, depending

on the nature of the function F (s), then the following theorems are recommended.

De�nition: An operator Lk;t[F (s)] is de�ned by the equation

Lk;t[F (s)] =
(�1)k
k!

F (k)

�
k

t

��
k

t

�k+1

for any real positive number t and any positive integer k.

Condition: A function F (s) satis�es condition A if it has derivatives of all orders in

(0 < s <1) and if there exists a constant M such that for (0 < s <1)

Lk;t[F (s)] < M (k = 1; 2; : : :)

jsF (s)j < M:
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Result: [5; page 315]:

Condition A is necessary and su�cient that

F (s) =

Z
1

0

e�stf(t)dt;

where f(t) is bounded in (0 < t <1).

Result: [5; page 316]:

If F (s) is the Laplace transform of a function f(t) with f(t) bounded in (0 < t <1),

then

lim
k!1

�
sup

0<t<1
jLk;t[F (s)]j

�
= ess sup

0<t<1
jf(t)j:

Now suppose we are given F (s) for a function f(t) which is known to satisfy part (i)

of the de�nition of our class D�, and we want to know if condition (ii) is also satis�ed,

i.e., the existence of c and � such that jf(t)j � ce�t. Moreover, we want to estimate

the least c and �. Then the results of Widder [5] suggest the following.

Let G(s; �) = F (s� �)

where � is a real number to be �xed later. Then, the original function of G(s; �) is

simply e�tf(t). We try to �nd the least possible value � that makes the following limit

exist

lim
k!1

�
sup

0<t<1
jLk;t[G(s; �)]j

�
= ess sup

0<t<1

��e�tf(t)�� :
If we succeed in doing so, then we claim that

��e�tf(t)�� � c

and our c and � are on hand, with � = ��.
Example:

F (s) =
1

s� 1
2

f(t) = e
1

2
t

G(s; �) = F (s� �) =
1

s� � � 1
2

g(t) = e(
1

2
+�)t

Lk;t[G(s; �)] =
(�1)k
k!

(�1)kk!�
k

t
� � � 1

2

�k+1

�
k

t

�k+1

=

 
k

k � t
�
� + 1

2

�
!k+1

:
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Clearly,

lim
k!1

�
sup

0<t<1
jLk;t[G(s; �)]j

�
=

8>><
>>:

1 � = �1
2

1 � 6= �1
2

hence, we choose � = �1
2
and the corresponding limit c = 1. Then, je�tf(t)j � c = 1,

and jf(t)j � ce��t = e
1

2
t. Giving � = 1

2
as expected.

Numerical Implementation:

We use the software Mathematica to implement our technique. The following input

statements provide the desired results.

Algorithm

K := Machine precision (to be speci�ed)

L := N [�;K] = �opt (to be speci�ed)

B := N [�;K] = �opt (to be speci�ed)

m := number of polynomials needed = Nopt (to be speci�ed)

f [s�] := f [s] = N [F (s);K] = The Laplace Transform (to be speci�ed).

a[n�] := a[n] = N [(L+ 0:)(2n + 1)Sum[(((�1)^i)((n+ i)!)f [B + L+ 0:)

+(L+ 0:)i])=((n � i)!((i!)^2)); fi; 0; ngK] = (the coe�cient an)

fa[x�] := N [Exp[(B + 0:)x]Sum[a[n]Legendre P [n; 1� 2Exp[�2(L+ 0:)]];

fn; 0;mg];K] = (the approximation function).

g(x�] := N [f(x);K] = the exact function (to be speci�ed).

h[x�] : N [Abs[fa[x]� g[x]];K] = the error function.

Table [fN [x; 1]N [fa[x]; 8]N [g[x]; 8]; Number Form[h[x]; 2]g; fx; t0 ; T; t1g]; [t0; T ] is the interval
of approximation and t1 is the increment size of the calculation (to be speci�ed)
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Examples:

Example 1:

F (s) =
1

s
f(t) = 1:

m = 2

t f(t) Exact fa(t) Appr. Error

0:0 1:0 1:0 0:0

20:0 1:0 1:0 0:0

40:0 1:0 1:0 0:0

60:0 1:0 1:0 0:0

80:0 1:0 1:0 0:0

100:0 1:0 1:0 0:0

120:0 1:0 1:0 0:0

140:0 1:0 1:0 3:1 10�14

160:0 1:0 1:0 6:1 10�4

180:0 1:0 1:0 2:0 10�14

200:0 1:0 1:0 7:0 10�12

Example 2:

F (s) =
1

(s+ 1)2 + 1

f(t) = e�t sin t

(a)

m = 10

t f(t) Exact fa(t) Appr. Error

0:0 �0:00000962189 0:0 9:6 10�6

0:8 0:32239106 0:32239694 5:9 10�6

2:0 0:20787082 0:20787958 8:8 10�6

2:0 0:067052245 0:06701974 3:3 10�5

3:0 �0:00049518539 0:0 5:0 10�5

4:0 �0:01406353 �0:013932035 5:0 10�4

5:0 �0:0083793352 �0:008983291 6:10 10�4

5:0 �0:001941255 �0:0028961856 9:5 10�4

6:0 �0:0019625595 0:0 2:0 10�3

(b)
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m = 20

t f(t) Exact fa(t) Appr. Error

0:0 2:5354036 0:0 2:5 10�8

0:8 0:32239695 0:32239694 1:1 10�8

2:0 0:20787955 0:20787958 3:0 10�8

2:0 0:067019656 0:06701974 8:4 10�8

3:0 �2:934823 0:0 2:9 10�8

4:0 �0:013931553 �0:013932035 4:8 10�7

5:0 �0:0089845545 �0:008983291 1:3 10�6

5:0 �0:002895472 �0:0028961856 7:1 10�7

6:0 0:000010587337 0:0 1:1 10�4

Example 3:

F (s) =
1

(s+ 2)3=2(s+ 1)

f(t) = e�xEr f(
p
t)� 2

r
t

�
e�2t

(a)

m = 5

t f(t) Exact fa(t) Appr. Error

0:0 �0:0091284955 0:0 9:1 10�3

0:2 0:051823691 0:048925307 2:9 10�3

0:4 0:099266734 0:10090527 1:6 10�3

0:6 0:13233794 0:13555411 3:2 10�3

0:8 0:15181664 0:15304602 1:2 10�3

1:0 0:1594026 0:15730278 2:1 10�3

1:0 0:15723974 0:15251432 4:7 10�3

1:0 0:14761049 0:14216317 5:4 10�3

2:0 0:13274715 0:12884934 3:9 10�3

2:0 0:11472268 0:11438317 3:4 10�4

2:0 0:095393769 0:099949961 4:6 10�3

(b)
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m = 25

t f(t) Exact fa(t) Appr. Error

0:0 �0:000046726633 0:0 4:7 10�5

0:2 0:048926224 0:048925307 9:2 10�7

0:4 0:10090542 0:10090527 1:5 10�7

0:6 0:1355571 0:13555411 1:6 10�6

0:8 0:15304517 0:15304602 8:5 10�7

1:0 0:15730314 0:15730278 3:6 10�7

1:0 0:15251373 0:15251432 5:9 10�7

1:0 0:14216473 0:14216317 1:6 10�6

2:0 0:12884655 0:12884934 2:8 10�6

2:0 0:11438579 0:11438317 2:6 10�6

2:0 0:09995069 0:099949961 7:3 10�7

Example 4:

F (s) =

p
s+ 2

(s+ 1)3=2

f(t) = te�
3

2
tI1

�
t

2

�
+ (t+ 1)I0

�
t

2

�

where I1 and I0 are the modi�ed Bessel functions of degree 1 and zero respectively.

(a)

m = 5

t f(t) Exact fa(t) Appr. Error

0:0 1:0000323 0:0 3:2 10�5

0:2 0:8986087 0:89862316 1:4 10�5

0:4 0:79809951 0:79810129 1:8 10�6

0:6 0:70224679 0:70223497 1:2 10�5

0:8 0:61322768 0:61321473 1:3 10�5

1:0 0:5321391 0:53213443 4:7 10�6

1:2 0:45935012 0:45935646 6:3 10�6

1:4 0:39475522 0:39476999 1:5 10�5

1:6 0:33795381 0:33797177 1:8 10�5

1:8 0:28837582 0:28839136 1:6 10�5

2:0 0:24536722 0:24537636 8:6 10�6

(b)
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m = 10

t f(t) Exact fa(t) Appr. Error

0:0 0:99999984 1:0 1:6 10�7

0:2 0:89862312 0:89862316 3:7 10�8

0:4 0:79810128 0:79810129 1:6 10�8

0:6 0:702235 0:70223497 3:4 10�8

0:8 0:6132147 0:61321473 3:6 10�8

1:0 0:053213446 0:53213443 3:4 10�8

1:2 0:45935644 0:45935646 1:7 10�8

1:4 0:39476997 0:39476999 2:1 10�8

1:6 0:33797182 0:33797177 4:7 10�8

1:8 0:28839135 0:28839136 8:7 10�9

2:0 0:2453763 0:24537636 5:2 10�8

Example 5:

F (s) =
1p

s2 + 1

f(t) = J0(t)

= Bessel function of degree zero

(a)

m = 10

t f(t) Exact fa(t) Appr. Error

0:0 1:0001498 1:0 1:5 10�4

0:2 0:99008446 0:99002497 5:9 10�5

0:4 0:96033677 0:96039823 6:1 10�5

0:6 0:91201646 0:91200486 1:2 10�5

0:8 0:84638125 0:8462873 9:4 10�5

1:0 0:76516841 0:76519769 2:9 10�5

1:0 0:6709762 0:67113274 1:6 10�4

1:0 0:56677705 0:56685512 7:8 10�5

2:0 0:4555604 0:45540217 1:6 10�4

2:0 0:34031201 0:33998641 3:3 10�4

2:0 0:2241224 0:22389078 2:3 10�4

(b)
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m = 20

t f(t) Exact fa(t) Appr. Error

0:0 0:99999486 1:0 5:1 10�6

0:2 0:99002349 0:99002497 1:5 10�6

0:4 0:96039749 0:96039823 7:4 10�7

0:6 0:091200681 0:91200486 1:9 10�6

0:8 0:84628488 0:84628735 2:5 10�6

1:0 0:765200466 0:76519769 2:8 10�6

1:0 0:067113118 0:67113274 1:6 10�6

1:0 0:56685251 0:56685512 2:6 10�6

2:0 0:45540876 0:45540217 6:6 10�6

2:0 0:3399851 0:33998641 1:3 10�6

2:0 0:22388007 0:22389078 1:1 10�5

Conclusion:

Two functions that are equal almost everywhere, have the same Laplace transform

if it exists. For this, it is clear that we can not recover the original function uniquely,

i.e., we claim that our approximation function can only di�er from the original function

on a set of at most measure zero. Therefore, it is quite di�cult, if not impossible, to

predict from the given transform if our original function satis�es the hypothesis of part

(i) of our class W�. This strongly suggests that we must rely on the nature of the

problem being under transformation and the physical interpretation of the function in

question.

The method presented demonstrates the dependence of the number of polynomials

needed to achieve a certain desirable accuracy on the bounds and total variation of the

original function; hence it was necessary to restrict our class to the class D� for which

the maximum bounds and the total variation can be estimated.

Finally, the introduction of the parameters � and � in the scheme has proven to be

quite e�cient and helpful in allowing us to enlarge our class W� as well as minimize

the number of steps needed in the evaluation when the optimal choice of � and � is

used. The dependence of � and � on the transform F (s) and the growth of the original

function f(t) demonstrates their signi�cant importance.
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