
Comparison of multigrid performance for higher order

scheme with 5-point scheme

Mun. S. Han, Do Y. Kwak and Jun S. Lee

J. KSIAM Vol.4, No.2, 135-142, 2000

Abstract

We consider a multigrid algorithm for higher order �nite di�erence scheme for

the Poisson problem on rectangular domain. Several smoothers including Jacobi,

Red-black Gauss-Seidel are tested and compared. Since higher order scheme gives

much more accurate result then 5-point scheme, one may use small number of

levels with higher order scheme and thus the overall cost is reduced quite a lot.

The numerical experiment compares the two cases.

1 Introduction

The purpose of this paper is to consider the convergence of a multigrid algorithm for a

higher order �nite di�erence scheme and compare overall computational cost with �ve

point scheme.

Multigrid methods have been proven very fast and robust for most of elliptic prob-

lems with many types of discretizations. See [1],[2],[3], for example. For a various

convergence proofs, we refer to [5], [6],[8],[9],[4].

Usually, multigrid algorithm consists of a sequence M1 �; � � � ;� MJ of nested

�nite dimensional spaces, smoothing process for each level and some transfer opera-

tor between the spaces. First, a smoothing(presmoothing) is performed on the �nest

level, then the residual is passed onto the next coarser level, where the slowly vary-

ing component is relaxed, the process repeated until down to the coarsest grid, where

the problem is solved exactly. The resulting quantity then is passed back to the �ner

levels, sometimes with additional smoothing(postsmoothing). Such an algorithm is

typical and called a V-cycle, while other variants, such as using smoothing as we go

down only(backslash-cycle) or many smoothings for each level are possible. Another

variation is to use two correction step at each level. This is called W-cycle. Usually

W-cycle converges faster(with more work) and easier to prove its convergence. How-

ever, V-cycle is simpler and advocated by practitinoers and the convergence theory is

mathematically more challenging.
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Commonly used discretization method for simple elliptic problems is 5-point for-

mula, which has second order accuracy. However to achieve very accuracy, one needs

to re�ne the meshes, which sometimes require large memory and time. In most labora-

tory job, one takes maximum 8 levels, which mounts to 256� 256 grids. This is quite

a memory and time consuming for a model problem. For realistic problems, one may

need more levels and the problems are coupled with other systems, which requires still

faster algorithms for elliptic part. Instead, higher order scheme requires lesser number

of levels to achieve the same accuracy. To resolve this problem, one adapts higher

order accuracy[11] which has h4 order accuracy. However, when the right hand side

is smooth, one can use newly developed higher order scheme in[16] to have h6 order

accuracy. This is an enormous gain, since one can use only one third number of levels

than �ve point formula to get the same accuracy.

For �nite di�erence case, there is a common belief that the sum of the order of

prolongation and restriction should be greater than 2 [10] so that one uses for example

bilinear prolongation with trivial restriction [15] or variants of such algorithms. How-

ever, we believe that the restriction operator as the adjoint of prolongation is most

natural. It makes the whole algorithm symmetric and also �ts the theory developed

by Bramble et al.[9],[8]. The performance of such nonsymmetric operator pairs will be

shown in later section.

2 Multigrid Method for 9 point compact scheme

In this section, we brie
y describe 9 point compact scheme and introduce multigrid

algorithm for this scheme. We �rst consider the following Poisson Equation :(
��u(x; y) = f(x; y) in 


u(x; y) = g(x; y) on @
:
(2.1)

Here, 
 can be any region in R
2 covered by squares. For simplicity, we assume 
 is the

unit square. For k = 1; 2; : : : ; J , let hk = 2�k be a mesh size of level k. De�ne 
k be

a space of points (xi; yj) = (ihk; jhk) for i; j = 0; 1; : : : ; 2k and Vk be a vector space of

function evaluated at 
k. A fourth-order compact scheme is written as follows:

1

6h2
[ 20ui;j � 4(ui�1;j + ui;j�1 + ui+1;j + ui;j+1)

�(ui�1;j�1 + ui+1;j�1 + ui+1;j+1 + ui�1;j�1) ]

=
1

12
[fi+1;j + fi�1;j + fi;j+1 + fi;j�1 + 8fi;j ] :

(2.2)

When the solution of the equation (2.1) is suÆciently smooth(having continuous sixth-

order partial derivatives) one may use the newly developed scheme, whose convergence

rate is of O(h6). The stencil of this high-order �nite di�erence scheme is written as
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follows[16]:
1

6h2
[ 20ui;j � 4(ui�1;j + ui;j�1 + ui+1;j + ui;j+1)

�(ui�1;j�1 + ui+1;j�1 + ui+1;j+1 + ui�1;j�1) ]

=

�
1 +

2h2

4!
�+

2h4

6!

�
�2 + 2

@4

@x2@y2

��
fi;j

(2.3)

where h = hk. This nine-point discretization gives a truncation error of O(h8) over a

square mesh(i.e., a convergence rate of O(h6)). We obtain a system of linear equation

of the form

Aku = f; (2.4)

where Ak is a sparse, n � n, symmetric, positive de�nite matrix and u is the vector

whose entries are ui;j , and f is the vector whose entries are f(xi; yj).

To describe the multigrid algorithm for this problem, we need certain intergrid

transfer operators(called prolongation) between two grids. Assuming we are given a

certain prolongation operator Ikk�1 : Vk�1 ! Vk, we de�ne the restriction operator

Ik�1k : Vk ! Vk�1 as its adjoint with respect to (�; �) :

(Ik�1k u; v)k�1 = (u; Ikk�1v)k 8u 2 Vk;8v 2 Vk�1:

Now the multigrid algorithm for solving (2.4) is de�ned as follows :

Multigrid Algorithm. W(m,m) Set B1 = A�11 . For 1 < k � J , assume that

Bk�1 has been de�ned and de�ne Bkf for f 2 Vk as follows:

1. Set x0 = 0 and q0 = 0.

2. De�ne xl for l = 1; : : : ;m by

xl = xl�1 +R
(l+m)

k
(f � Akx

l�1):

3. De�ne ym = xm + Ikq
p, where qi is de�ned by

qi = qi�1 +Bk�1

�
P 0
k�1(f � Akx

m)� Ak�1q
i�1
�
: i = 1; � � � ; p

4. De�ne yl for l = m+ 1; : : : ; 2m by

yl = yl�1 +R
(l+m)

k (f � Aky
l�1):

5. Set Bkf = y2m.

For comparison, we shall also consider multigrid algorithm with nonsymmetric opera-

tors. We will not repeat the algorithm here, instead, they will be considered in later

section.
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Figure 1: cell Ek
i;j and its subcells

Fix k. Let ui;j ; ui+1;j ; ui;j+1; ui+1;j+1 be points of level k � 1 and Ei;j be a cell

having them as its vertex. (We borrow the term "cell" from cell-centered method.)

Let u1i;j ; u
2
i;j ; u

3
i;j ; u

4
i;j and u5i;j be points of level k de�ned as in Figure 1. Note that

u1i;j = u3i;j�1; u
2
i;j = u4i+1;j ; u

3
i;j = u1i;j+1 and u4i;j = u2i�1;j : Divide Ei;j into four subcells,

labeling them counterclockwise as e1i;j ; e
2
i;j ; e

3
i;j ; e

4
i;j at level k. ( See Figure 1.)

Now, we de�ne the prolongation operator Ikk�1 be bilinear interpolation of four

points ui;j ; ui+1;j ; ui;j+1 and ui+1;j+1. First, ui;j ; ui+1;j; ui;j+1 and ui+1;j+1 of level k

are the same value of level k� 1 respectively. The mid points u1i;j ; u
2
i;j ; u

3
i;j and u

4
i;j can

be written as follows:

u1i;j =
ui;j + ui+1;j

2
; u2i;j =

ui;j + ui+1;j+1

2

u3i;j =
ui;j+1 + ui+1;j+1

2
; u4i;j =

ui;j + ui;j+1

2
:

(2.5)

The value of center u5i;j is the average of ui;j ; ui+1;j; ui;j+1 and ui+1;j+1 :

u5i;j =
ui;j + ui+1;j + ui;j+1 + ui+1;j+1

4
: (2.6)

Theorem 2.1 We have

Ak(I
k
k�1u; I

k
k�1u) � CAk�1(u; u); 8u 2 Vk�1: (2.7)
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Proof 1 Using the symmetry, we have

Ak�1(u; u) =
1

6

2k�1X
i;j

[ 20ui;j � 4(ui�1;j + ui;j�1 + ui+1;j + ui;j+1)

�(ui�1;j�1 + ui+1;j�1 + ui+1;j+1 + ui�1;j�1) ]ui;j

=
4

6

2k�1X
i;j

�
(ui;j � ui�1;j)

2 + (ui;j � ui;j�1)
2

+(ui;j � ui+1;j)
2 + (ui;j � ui;j+1)

2
�

+
1

6

2k�1X
i;j

�
(ui;j � ui�1;j�1)

2 + (ui;j � ui+1;j�1)
2

+(ui;j � ui+1;j+1)
2 + (ui;j � ui�1;j�1)

2
�
:

(2.8)

Set v = Ikk�1u then, similarly, we have

Ak(v; v) =
4

6

2kX
m;n

�
(vm;n � vm�1;n)

2 + (vm;n � vm;n�1)
2

+(vm;n � vm+1;n)
2 + (vm;n � vm;n+1)

2
�

+
1

6

2kX
m;n

�
(vm;n � vm�1;n�1)

2 + (vm;n � vm+1;n�1)
2

+(vm;n � vm+1;n+1)
2 + (vm;n � vm�1;n�1)

2
�
:

(2.9)

Each terms in (2.9) is bounded by the terms in (2.8). For example, ifm = 2i and n = 2j

then vm;n = ui;j and vm;n�1 = (ui;j � ui;j�1)=2 by the de�nition of our interpolation.

So we have

(vm;n � vm;n�1)
2
� (ui;j � ui;j�1)

2=4: (2.10)

Note that the di�erence (ui;j � ui;j�1)
2 appears �nite times(at most 10 times). Thus

there exists a positive constant C satisfying the inequality (2.7).

To prove multigrid convergence theory, we need following property, so-called, \ap-

proximation and regularity": There exist a number 0 < � � 1 and a constand C� such

that for all k = 1; � � � ; J ,

Ak((I � Ikk�1Pk�1)u; u) � C�

�
kAkuk

2
k

�k

��

Ak(u; u)
1��; 8u 2 Vk: (2.11)

Here, �k is the largest eigenvalue of Ak and Pk�1 is the elliptic projection de�ned by

Ak�1(Pk�1u; v) = Ak(u; I
k
k�1v); 8u 2 Vk; v 2 Vk�1: (2.12)
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hJ �min �max K Æ

1=16 0:826 0:999 1:211 0:030

1=32 0:823 0:999 1:215 0:030

1=64 0:823 0:999 1:215 0:031

1=128 0:823 0:999 1:216 0:031

Table 1: high-order scheme with Gauss-Seidel smoothing and 9-point interpolation

The following result can be proved as in [9].

Lemma 2.1 Let the operator Pk�1 be de�ned by (2.12). Then (2.11) holds for � = 1
2
.

With these preliminaries, we can prove the W-cycle result by the framework of [9].

Theorem 2.2 Let Ek = I �BkAk in algorithm W(m,m). Then we have

Ak(Eku; u) � ÆkAk(u; u); 8u 2 Vk; (2.13)

where Æk < 1.

3 Numerical Experiments

We consider the following problem on the unit square:

�r � pr~u = f in 
 = (0; 1)2;

~u = 0 on @
:
(3.1)

First, we report the maximum, minimum eigenvalues, condition numbers and con-

tractions of both algorithms with Gauss-Seidel smoothing and 9-point interpolation.

Numerical experiment shows that multigrid algorithm of high-order scheme converges

faster than that of 5-point scheme. Both algorithms contract independent of the mesh

size h and number of levels J .

Next, we report the number of iteration and discrete L2 errors of test problem.
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