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Abstract

A Legendre spectral tau approximation scheme for solving the two-dimensional

stationary incompressible Stokes equations is considered. Based on the vorticity-

stream function formulation and variational forms, boundary value and normal

derivative of vorticity are computed. A factorization technique for matrix stems

based on the Schur decomposition is derived. Several numerical experiments are

performed.

1 Introduction

The two-dimensional stationary Stokes equations describing the motion of an incom-

pressible uid in a bounded domain 
 � R2 with the boundary � can be written, in

terms of primitive variables, as

(1:1)

���u+rp = f in 
;

r � u = 0 in 
;

u = g on �;

where u is the velocity, p is the pressure, f is a �eld of given body forces, � is the

kinematic viscosity of the uid, and g is a given �eld de�ned on � satisfying the global

conservation property: Z
�
g � n ds = 0;
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where n is the unit outer normal vector on �. We assume, in this paper, that 
 =

(�1; 1) � (�1; 1) and �i; i = 1; 2; 3; 4, are edges of the boundary �, starting from the

south and turning counterclockwise (see Figure 1).

By applying the curl operation, the Stokes system (1.1), in terms of vorticity ! and

stream function  , becomes

(1:2)
���! = curlf in 
;

�� = ! in 
:

Since  is unique up to a constant, the following boundary conditions corresponding

to those of (1.1) are considered: for i = 1; 2; 3; 4,

(1:3)
 (x) = hi :=

R
_
x0x

g � n ds on �i;

@ 
@n = gi := �g � s on �i;

where s is the tangential vector on �,  (x0) = 0 for some x0 2 � and _
x0x is the path

from x0 to x along �.

The advantage of the vorticity-stream function formulation (1.2)-(1.3) is that we do

not need to deal with the divergence free condition r � u = 0 and the pressure p. Note

that the divergence condition is automatically satis�ed and the pressure is dropped

in (1.2). These lead a low cost discretization in numerical implementation. Also, the

velocity and the pressure can be easily recovered from the stream function. However,

a critical drawback of the formulation (1.2)-(1.3) is the lack of boundary conditions

on the vorticity ! while there are two boundary conditions on the stream function

 . A well-known way to overcome this di�culty in �nite di�erence or �nite element

methods is to de�ne the boundary conditions of vorticity from the relation ! = �� .

In this paper, we derive an e�cient method for �nding the traces of the vorticity

based on variational forms, Green's formula and the Schur decomposition through a

Legendre tau approximation. The ideas are similar to those proposed by Glowinski

and Pironneau[8]. However, we only deal with a sparse, symmetric matrix system in

which each column of the governing matrix is obtained by solving one Laplace equation

through a Legendre tau approximation(see Section 3) instead of solving a full matrix

system in which each column of the corresponding matrix is computed by solving two

Laplace equations as in [8].
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In recent years, a number of algorithms using spectral methods have been imple-

mented for solving the Stokes and the Navier-Stokes equations. Meanwhile, various

theoretical and numerical results dealing with spectral Galerkin and spectral collo-

cation methods have been established(see, e.g., [1-5, 13-14] and references therein).

However, to the authors' knowledge, the spectral tau methods seem to be less studied,

although they are frequently used in practice because of their e�ciencies in solving, for

example, Helmholtz type equations(see, e.g., [10] for the fast Helmholtz solver and [9]

for a Chebychev tau solver). Legendre tau formulations for the Stokes problem can be

founded in [12] and [15] in which the formulations are based on the velocity-pressure

form with homogeneous boundary conditions.

An outline of this work is as follows. In Section 2, we introduce a decomposition of

the system (1.2)-(1.3) and abstract variational forms. A Legendre tau approximation

scheme and a factorization method are given in Section 3, and numerical results are

presented in Section 4.

Throughout this paper, Hs(
) is the standard Sobolev space with the standard

norm k � kHs(
). We shall denote by (�; �) the usual inner product of L2(
). For any

Banach (or Hilbert) spaces X and Y , let L (U; V ) be the space of all bounded linear

operators from U to V and let U 0 be the dual space of U .

2 Decomposition and Variational formulation

In this section, we decompose the system (1.2)-(1.3) into two systems and derive vari-

ational forms for solving the decomposed systems.

Let X be the subspace of
Q4
i=1H

3

2 (�i) de�ned by the matching condition;

hi(ei+1) = hi+1(ei+1) for 1 � i � 4;

where e0is are the vertices of � with the convention that e5 = e1. We shall denote

by � �; � �(resp., < �; � >) the bilinear form of the duality between X 0 and X(resp.,

(
Q4
i=1H

1

2 (�i))
0 and

Q4
i=1H

1

2 (�i)) which is de�ned by� L; v �:= L(v); L 2 X 0
; v 2 X

(resp., < L; v >:= L(v); L 2 (
Q4
i=1H

1

2 (�i))
0
; v 2

Q4
i=1H

1

2 (�i)). The bilinear form

� �; � � is an extension of (�; �)L2(�); � w; v �=
R
�wv ds for all v 2 X;w 2 L2(�).



114 SERAN JUN, SUNGKWON KANG AND YONGHOON KWON

Consider the following spaces :

H(
) = fu 2 L2(
) j �u 2 L2
)g;

H = fu 2 L2(
) j �u = 0g;

L
2
0(
) = fu 2 L2(
) j (u; 1) = 0g;

V = fu 2 H2(
) j @u
@n j� = 0g;

G = fq 2 X 0 j � q; 1�= 0g:

We now decompose the system (1.2)-(1.3) into the following two problems. Let � ; �!

be the solutions of the problem:

(2:1)

����! = f1 in 
;

��� = �! in 
;

� = 0 on �i
@ � 
@ni

= gi on �i for 1 � i � 4;

and ~ ; ~! be the solutions of the problem:

(2:2)

���~! = f2 in 
;

��~ = ~! in 
;

~ = hi on �i
@ ~ 
@ni

= 0 on �i for 1 � i � 4;

where curlf = f1 + f2; f1 2 L
2(
); f2 2 L

2
0(
). Then  = � + ~ and ! = �! + ~!.

We now derive variational forms for the systems (2.1) and (2.2). Let (��d)
�1 2

L (L2(
);H2(
) \H1
0 (
)) denote Green's operator related to the Dirichlet boundary

value problem for �� in 
 � R2, i.e., for f 2 L2(
), u = (��d)
�1
f is the solution of

��u = f in 
; u = 0 on �;

and (��n)
�1 2 L(L2

0(
); V \L
2
0(
)) denote Green's operator related to the Neumann

boundary value problem for �� in 
 � R2; for f 2 L
2
0(
), u = (��n)

�1
f is the

solution of

��u = f in 
;
@u

@n
= 0 on �:
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Let 0; 1 be the following trace operators :

0v = (vj�1 ; � � � ; vj�4); 1v = (
@v

@n
j�1 ; � � � ;

@v

@n
j�4):

Assume that curlf 2 L2(
), (h1; � � � ; h4) 2 X and (g1; � � � ; g4) 2
Q4
i=1H

1

2 (�i). Then

(1.1) is equivalent to (1.2){(1.3).

We de�ne an operator E on L2(
) by

E� = 1((��d)
�1
�) for � 2 L2(
);

and an operator T on L2
0(
) by

T� = 0((��n)
�1
�) for � 2 L2

0(
):

Then the operator E(resp., T ) is a continuous linear operator from L
2(
) to

Q4
i=1H

1

2 (�i)

(resp., from L
2
0(
) to X). Hence, the adjoint operator E� of E is from (

Q4
i=1H

1

2 (�i))
0

to L2(
), and it is given by

(E�
�; �) =< �;E� > for � 2 (

4Y
i=1

H
1

2 (�i))
0
; � 2 L

2(
);

and the adjoint operator T � : X 0 ! L
2
0(
)

0 of T is given by

(T ��)(�) =� �; T�� for � 2 X 0
; � 2 L

2
0(
):

Then we have the following.

(1) For any � 2 (
Q4
i=1H

1

2 (�i))
0, let ~� be the unique solution of the problem:

(2:3)
�~� = 0 in 
;

0~� = � on �;

then E�
� = �~�.

(2) For any � 2 G, let ~� be the unique solution of the problem:

(2:4)

�~� = 0 in 
;

1~� = � on �;

(~�; 1) = 0;

then T �� = ~� in the (L2
0(
))

0-sense.
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By applying (��d)
�1
�(resp., (��n)

�1
�), and then Green's second identity and

the duality of E(resp., T ), we have the variational form for (2.1)(resp., (2.2)):

(2:5) (�!; �) = �(E�
q; �) + (

1

�
(��d)

�1
f1; �) for any � 2 L2(
);

(2:6) (~!; �) = (T �p; �) + (
1

�
(��n)

�1
f2; �) for any � 2 L2

0(
);

where q := 0�! 2 (
Q4
i=1H

1

2 (�i))
0 and p := 1~! 2 G. Here, q and p satisfy the following

linear variational equations:

(2:7)

(E�
q;E

�
�) = ( 1

�
(��d)

�1
f1; E

�
�)� �((g1; g2; g3; g4))

for any � 2 (
Q4
i=1H

1

2 (�i))
0
;

where �((g1; g2; g3; g4)) =< �; (g1; g2; g3; g4) >;

and

(2:8)
(T �p; T ��) = �( 1

�
(��n)

�1
f2; T

�
�) + �((h1; h2; h3; h4)) for any � 2 G;

where �((h1; h2; h3; h4)) =� �; (h1; h2; h3; h4)� :

Therefore, the solution procedure for (2.1){(2.2) is following:

(1) Compute 1
�
(��d)

�1
f1 and

1
�
(��n)

�1
f2.

(2) Compute q, p from (2.7) and (2.8).

(3) Finally, compute �!, ~! and � , ~ from (2.5), (2.6) and

(2:9) ��� = �!; � j�= 0;

(2:10) ~ = (��n)
�1~! +

1

4

 
4X
i=1

Z
�i

hi ds� � 0((��n)
�1~!); 1�

!
:

Then the problem (2.1)(resp.,(2.2)) is equivalent to (2.5), (2.7) and (2.9) (resp.,

(2.6), (2.8) and (2.10)). An application of these abstract forms to sine approximation,

see [11].
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Remark. Since q = 0�! and p = 1~! are computed from the boundary data gis

and his and the actions of E� and T � (see equations (2.7) and (2.8)), once p and q are

obtained, �!, � , ~! and ~ can be computed directly from equations (2.5), (2.6), (2.9)

and (2.10). Thus, the main problem to be solved is to compute q and p, in other words,

the construction E� and T � through a Legendre tau approximation.

3 Legendre tau approximation scheme

In this section we describe a Legendre tau approximation and factorization scheme.

Since the approximation scheme for (2.5), (2.7) and (2.9) can be described in a similar

way, we present only the approximation scheme for (2.6), (2.8) and (2.10).

Let D be a subset in R or R2. For any nonnegative integer M we denote by

SM (D) the space of all polynomials on D of degree � M in each variables. Denoting

by S
1;0
M (D) the subspace of SM (D) of all polynomials whose derivatives vanish on @
.

The Legendre polynomial Lk(x); k � 0, is orthogonal to any Legendre polynomial

Ll; l 6= k, in L2(�1; 1), it has degree k, Lk(1) = 1, and satis�es
R 1
�1 L

2
k(x)dx =

2
2k+1

and
@L(�1)
@x

= (�1)k
k(k+1)

2
. Let PM be the orthogonal projection operator in L2(D) onto

SM (D). To simplify our expression, we assume that M is even.

We �rst consider a Legendre tau scheme for the following problem:

(3:1)
��u = f in 
;

@u
@n = 0 on �:

Let the tau approximate solution for (3.1) be

uM (x; y) =
MX
k=0

MX
l=0

uklLk(x)Ll(y):

Note that the test functions do not satisfy the boundary conditions individually. Thus,

it is necessary to have weighted residual conditions for both the PDE and the boundary
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conditions. From the weighted residual conditions for the boundary conditions, we have

(3:2)

uk;M�1
(M�1)M

2
= �

M�3X
l=1;l:odd

ukl

l(l + 1)

2
; k = 0; � � � ;M;

ukM
M(M+1)

2
= �

M�2X
l=2;l:even

ukl

l(l + 1)

2
; k = 0; � � � ;M;

uM�1;l
(M�1)M

2
= �

M�3X
k=1;k:odd

ukl

k(k + 1)

2
; l = 0; � � � ;M;

uMl
M(M+1)

2
= �

M�2X
k=2;k:even

ukl

k(k + 1)

2
; l = 0; � � � ;M:

Boundary equations (3.2) give only 4M independent equations since the four corners

of the square have been counted twice. From (3.2), the coe�cients uM�1;l, uk;M�1,

uMl and ukM ; k; l = 0; � � �,M are determined by the coe�cients ukl; k; l = 0; � � �,M � 2,

so that we need (M � 1)2 = (M + 1)2 � 4M equations to determine the unknown

coe�cients ukl; k; l = 0; � � � ;M , completely. Therefore, the spectral tau approximation

of the problem (3.1) is equivalent to

(3:3)
�nd uM 2 S

1;0
M (
) \ L2

0(
) such that

(��uM ; �) = (f; �) for any � 2 SM�2(
):

To introduce our diagonalization technique for the Legendre tau approximation

scheme, we represent (3.3) as a linear system. We recall some properties (see [6]) which

will be of constant use. The formal expansion of the �rst derivative of a function

v(x) =
P
1

k=0 v̂kLk(x) can be written as

(3:4)
dv(x)

dx
=

1X
m=0

v̂
1
mLm(x);

where

v̂
1
m = (2m+ 1)

1X
k=m+1k+m:odd

v̂k:

Actually, this formula can be justi�ed for every v(x) 2 H
1(�1; 1) (see [7]). First, we

shall construct the matrix A with size ofM�(M+1) representing the di�erential opera-

tor d
dx

on the space SM (�1; 1). Let v(x) :=
PM
k=0 vkLk(x) and

dv(x)
dx

:=
PM�1
k=0 akLk(x).
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Then, from relation (3.4), de�ne the matrix A by

(3:5)
A

2
666666666666666664

v0

v1

v2

v3

�

�

vM�1

vM

3
777777777777777775

:=

2
666666666666666664

0 1 0 1 0 � � 1 0

0 0 3 0 3 � � 0 3

0 0 0 5 0 � � 5 0

0 0 0 0 7 � � 0 7

� � � � � � � � �

� � � � � � � � �

0 0 0 0 0 � � 2M � 3 0

0 0 0 0 0 � � 0 2M � 1

3
777777777777777775

2
666666666666666664

v0

v1

v2

v3

�

�

vM�1

vM

3
777777777777777775

=
h
a0 a1 a2 a3 � � aM�2 aM�1

iT
:

Second, we shall construct the matrix A0 of sizeM�(M�1) representing the di�erential

operator d
dx

on the space S
1;0
M (�1; 1). Let v 2 S

1;0
M (�1; 1). Since @v

@x
(�1) = 0, we have

the following relation.

(3:6)
vM

M(M+1)
2

= �(v2
2�3
2
+ v4

4�5
2
+ � � �+ vM�2

(M�2)�(M�1)
2

);

vM�1
(M�1)M

2
= �(v1

1�2
2
+ v3

3�4
2
+ v5

5�6
2
+ � � �+ vM�3

(M�3)�(M�2)
2

):
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By using (3.6), de�ne the matrix A0 by

(3:7)

A0

2
666666666666666664

v0

v1

v2

v3

�

�

�

vM�2

3
777777777777777775

:=

2
666666666666666666664

0 1 0 1 0 1 � � 0

0 0 3 0 3 0 � � 3

0 0 0 5 0 5 � � 0

0 0 0 0 7 0 � � 7

� � � � � � � � �

� � � � � � � � �

0 0 0 0 0 0 � � 2M � 5

0 0 0 0 0 0 � � 0

0 0 0 0 0 0 � � 0

3
777777777777777777775

2
666666666666666664

v0

v1

v2

v3

�

�

�

vM�2

3
777777777777777775

�

2
666666666666666666664

1

0

5

0

�

�

0

2M � 3

0

3
777777777777777777775

M�1z }| {h
0 1�2

2 0 3�4
2 � �

(M�3)�(M�2)
2 0

i

2
666666666666666664

v0

v1

v2

v3

�

�

�

vM�2

3
777777777777777775

�

2
666666666666666666664

0

3

0

7

�

�

2M � 5

0

2M � 1

3
777777777777777777775

M�1z }| {h
0 0 2�3

2
0 4�5

2
� �

(M�2)�(M�1)
2

i

2
666666666666666664

v0

v1

v2

v3

�

�

�

vM�2

3
777777777777777775

:

Third, we shall construct the matrix B representing the di�erential operator � d2

dx2

on the space S
1;0
M (�1; 1). The matrix B must have size of (M � 1) � (M � 1). Let

v(x) 2 S
1;0
M (�1; 1) and �(x) :=

PM�2
k=0 �kLk(x) 2 SM�2(�1; 1). Then there exists a
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 (x) := �(x) + �LM�1(x) + �LM (x) 2 S
1;0
M (�1; 1) so that

(3:8)

Z 1

�1
�
d
2
v(x)

dx2
�(x)dx =

Z 1

�1
�
d
2
v(x)

dx2
 (x)dx =

Z 1

�1

dv(x)

dx

d (x)

dx
dx:

Let  (x) :=
PM
k=0  kLk(x). Then  k = �k; 0 � k �M � 2, and  M�1 = �; M = �. If

we let

d (x)
dx

:=
M�1X
k=0

bkLk(x);

[~v] := [v0 v1 � � � vM�2]
T
;

[ ~ ] := [ 0  1 � � �  M�2]
T
;

then from (3.7), we have

(3:9) A0[~v] = [a0 a1 � � � aM�1]
T
; A0[ ~ ] = [b0 b1 � � � bM�1]

T
:

If we let

�
d
2
v(x)

dx2
:=

M�2X
k=0

�kLk(x);

then by orthogonality, we have

(3:10)

Z 1

�1
�
d
2
v(x)

dx2
�(x)dx =

M�2X
k=0

�k�k

2

2k + 1
;

Z 1

�1

dv(x)

dx

d (x)

dx
dx =

M�1X
k=0

akbk

2

2k + 1
:

We de�ne the matrices Q and �Q by

Q :=

2
666666666666664

2 0 0 0 � � 0

0 2
3

0 0 � � 0

0 0 2
5

0 � � 0

0 0 0 2
7

� � 0

� � � � � � �

� � � � � � �

0 0 0 0 � � 2
2M�1

3
777777777777775
M�M;

�Q :=

2
666666666666664

2 0 0 0 � � 0

0 2
3

0 0 � � 0

0 0 2
5

0 � � 0

0 0 0 2
7

� � 0

� � � � � � �

� � � � � � �

0 0 0 0 � � 2
2M�3

3
777777777777775
(M�1)�(M�1):
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From (3.8), (3.9) and (3.10), we have

2
666666664

v0

v1

�

�

vM�2

3
777777775

T

A
T
0QA0

2
666666664

 0

 1

�

�

 M�2

3
777777775
=

2
666666664

�0

�1

�

�

�M�2

3
777777775

T

�Q

2
666666664

�0

�1

�

�

�M�2

3
777777775
:

Since

B[~v] = [�0 �1 � � � �M�2]
T
;

we have 2
666666664

v0

v1

�

�

vM�2

3
777777775

T

A
T
0QA0

2
666666664

 0

 1

�

�

 M�2

3
777777775

=

2
666666664
[B]

2
666666664

v0

v1

�

�

vM�2

3
777777775

3
777777775

T

�Q

2
666666664

�0

�1

�

�

�M�2

3
777777775

=

2
666666664

v0

v1

�

�

vM�2

3
777777775

T

[B]T �Q

2
666666664

�0

�1

�

�

�M�2

3
777777775
:

Since v(x) and �(x) are arbitrary, and  k = �k; 0 � k �M � 2, we obtain

B
T �Q = A

T
0QA0;

so that

(3:11) B = �Q�1
A
T
0QA0:

Now we are ready to describe the problem (3.3) into a linear system. Let uM (x; y) :=PM
k=0

PM
l=0 uklLk(x)Ll(y) with u00 = 0, be the tau solution of the problem (3.3). Let

~U and U be de�ned by

U =

2
6664
u00 � � � u0M

...
...

...

uM0 � � � uMM

3
7775 ; ~U =

2
6664

u00 � � � u0;M�2

...
...

...

uM�2;0 � � � uM�2;M�2

3
7775 :
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Hence, from the orthogonal property of Legendre polynomials, we have

(3:12) PM�2(��uM (x; y)) =
M�2X
k=0

M�2X
l=0

�klLk(x)Ll(y);

where 2
6664

�00 � � � �0;M�2

...
...

...

�M�2;0 � � � �M�2;M�2

3
7775 = B ~U + ~UBT

:

Let PM�2f(x; y) :=
PM�2
k=0

PM�2
l=0 fklLk(x)Ll(y) and let f00 = 0. From (3.3) and (3.12),

we have a spectral tau solver for the two-dimensional Poisson equation:

(3:13) B ~U + ~UBT = F;

where

F := [fkl](M�1)�(M�1):

We now present our diagonalization technique based on Schur decomposition for the

linear system (3.13). The successful implementation requires the previous procedures

to keep up the merits and to avoid the faults of a matrix diagonalization and Schur

decomposition. Let H = A
T
0QA0, so that H is a symmetric matrix. Then (3.13) can

be expressed as

(3:14) [ �Q�1
H] ~U + ~U [ �Q�1

H]T = F:

Let

~H := �Q�
1

2H �Q�
1

2 ;
~~U := �Q

1

2 ~U �Q
1

2 ; ~F := �Q
1

2F �Q
1

2 ;

and multiply both sides of (3.14) by �Q
1

2 , then we have

(3:15) ~H
~~U +

~~U ~H = ~F :

By construction of ~H, there exist an orthogonal matrix V and a diagonal matrix D =

diag(�1; �2; �3; � � � ; �M�1); �1 = 0; �i > 0; i = 2; � � � ;M � 1, such that ~HV = V D. If

we let
~~~U := V

T ~~UV;
~~F := V

T ~FV;
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(3.15) becomes

(3:16) D
~~~U +

~~~UD =
~~F :

Let
~~F := [

~~fkl](M�1)�(M�1) and
~~~U = [

~~~ukl]; from (3.16), we have the following relation :

8<
:

~~~ukl = 0 if k = l = 0;

~~~ukl =
~~f
kl

�k+�l
otherwise:

Since
~~U = V

~~~UV T and ~U = �Q�
1

2
~~U �Q�

1

2 , the coe�cients ukl; 0 � k; l � M � 2, are

obtained through the following matrix multiplication only without solving the linear

system (3.13) or (3.15).

(3:17)
~U = �Q�

1

2V
~~~UV T �Q�

1

2

= [ �Q�
1

2V ]
~~~U [ �Q�

1

2V ]T :

Let C be the matrix representing the discrete operator T �M of T �. To obtain the

matrix C, we extend the tau solver based on our diagonalization technique for the

homogeneous case to the case with inhomogeneous boundary condition. The matrix

C consists of four column blocks. To obtain, for example, the nth column of the �rst

block, we consider the following problem:

(3:18)

8<
: �u = 0 in 
;

@u
@n = Ln(x)��1 on �:

Let uM :=
PM
k=0

PM
l=0 uklLk(x)Ll(y) be the approximate solution for the problem

(3.18). Since the test functions do not satisfy the boundary conditions individually,
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the weighted residual conditions corresponding to the boundary conditions are

(3:19)

uk;M�1
M(M�1)

2
= �

M�3X
l=1;l:odd

ukl

l(l + 1)

2
for k = 0; � � � ;M; k 6= n;

ukM
M(M+1)

2
= �

M�2X
l=2;l:even

ukl

l(l + 1)

2
for k = 0; � � � ;M; k 6= n;

uM�1;l
M(M�1)

2
= �

M�3X
k=1;k:odd

ukl

k(k + 1)

2
for l = 0; � � � ;M;

uMl
M(M+1)

2
= �

M�2X
k=2;k:even

ukl

k(k + 1)

2
for l = 0; � � � ;M;

un;M�1
M(M�1)

2
= 1

2
�

N�3X
l=1;l:odd

unl

l(l + 1)

2
;

unM
M(M+1)

2
= �1

2
�

N�2X
l=2;l:even

unl

l(l + 1)

2
:

Let

u
2
M =

1

M(M � 1)
Ln(x)LM�1(y)�

1

M(M � 1)
Ln(x)LM (y) 2 L2

0(
);

and u1M be the Legendre tau approximate solution of the following problem:

(3:20)

8<
: ��u1 = �u2M in 
;

@u1

@n = 0 on �:

Then u1M 2 S
1;0
M (
) \ L2

0(
) satis�es

(3:21) (��u1M ; �) = (�u2M ; �) for � 2 SM�2(
);

and for n =M � 1;M ,

(3:22) (�u2M ; �) = 0 for � 2 SM�2(
):

From (3.22), we have a trivial solution u1M = 0 for n =M � 1;M . To avoid the trivial

solution, for N �M � 2, we de�ne the boundary element space BN � L
2
0(�) on � by

BN := fLk(x)��i
; Ll(y)��j

j k; l = 1; � � � ; N; i = 1; 3; j = 2; 4g:

Let PB

N be the L2-projection operator from L
2(�) to BN . From the de�nition of the

boundary element space BN ,

(3:23) P
B

N1(u
1
M + u

2
M ) = P

B

N1(u
2
M ) = Ln(x)��1 :
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From (3.21) and (3.23), u1M + u
2
M becomes the spectral Legendre tau approximate

solution of the problem (3.18); uM = u
1
M + u

2
M . Similarly, we can construct the other

columns and those of other blocks of the matrix C.

Now we are ready to describe the discretized formulations for (2.6), (2.8) and (2.10)

by using the Laplace solver for the homogeneous and inhomogeneous boundary condi-

tions. De�ne the discrete operator (��n)
�1
M of (��n)

�1 by

(��n)
�1
M (f) := uM for f 2 L2

0(
);

where uM 2 S
1;0
M (
) \ L2

0(
) satis�es:

(��uM ; �) = (f; �) for � 2 SM�2(
);

and de�ne the discrete operator T �M of T � by

T
�

M�N := (��n)
�1
M (�u2) + u2 for �N 2 BN ;

where u1 2 S
1;0
M (
) \ L2

0(
), u2 2 SM (
) \ L2
0(
) satisfy8<

: (��u1; �) = (�u2; �) for � 2 SM�2(
);

P
B

N1(u2) = �N :

Therefore, we consider the following discretized formulations for the discrete normal

derivative pN of the vorticity, the discrete vorticity !M and stream function  M :8>>><
>>>:

�nd pN 2 BN such that

(T �MpN ; T
�

M�N ) = �( 1
�
(��n)

�1
M (f2); T

�

M�N ) +
P4
i=1

R
�i
hi�N ds

for any �N 2 BN ;8<
: �nd !M 2 SM�2 such that

(!M ; �) = (T �MpN ; �) + ( 1
�
(��n)

�1
M (f2); �) for any � 2 SM�2(
);8<

: �nd  M 2 SM (
) such that

 M = (��n)
�1
M (!M ) + 1

4
(
P4
i=1

R
�i
hi ds�

R
�(��n)

�1
M (!M) ds):

4 Numerical results

The �rst example is the case with u = v = 0 on the sides �1;�2;�4, and u = �(x +

1)2(x�1)2; v = 0 on �3 (see Figure 1 for �i). This problem has a regular solution. Table
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1 shows the convergence for the discrete boundary value qN , the discrete vorticity !M

and the discrete stream function  M for curlf = 0. In Figures 2.1 and 2.2, streamlines

and vector �elds for this case are shown for M = 16; N = 12.

Table 1. Convergence of !M ,  M and qN : curlf = 0, u = v = 0 on �1;�2;�4,

u = �(x+ 1)2(x� 1)2; v = 0 on �3, and Mi = Ni + 4; i = 1; 2.

k!M1
� !M2

kL2(
) k M1
�  M2

kL2(
) kqN1
� qN2

kL2(�)

M1 = 20 M2 = 24 0.1061e-3 0.3307e-7 0.4807e-3

M1 = 24 M2 = 28 0.0436e-3 0.0636e-7 0.1488e-3

M1 = 28 M2 = 32 0.0208e-3 0.0265e-7 0.1114e-3

M1 = 32 M2 = 36 0.0110e-3 0.0113e-7 0.0739e-3

M1 = 36 M2 = 40 0.0049e-3 0.0047e-7 0.0449e-3

The second example is the case with  = 1, @ 
@n = 0 on � and curlf = L2(x)L2(y),

where L2(x) and L2(y) are the second order Legendre polynomials. Table 2 shows the

convergence for the discrete normal derivative pN , the discrete vorticity !M and the

discrete stream function  M . In Figures 3.1 and 3.2, streamlines and vector �elds for

the second example are shown for M = 16; N = 12.

Table 2. Convergence of !M ,  M and pN : curlf = L2(x)L2(y),  = 1, @ 
@n = 0 on �

and Mi = Ni + 4; i = 1; 2.

k!M1
� !M2

kL2(
) k M1
�  M2

kL2(
) kpN1
� pN2

kL2(�)

M1 = 20 M2 = 24 0.1885e-5 0.8187e-6 0.9586e-3

M1 = 24 M2 = 28 0.0625e-5 0.3614e-6 0.6143e-3

M1 = 28 M2 = 32 0.0292e-5 0.1668e-6 0.3665e-3

M1 = 32 M2 = 36 0.0190e-5 0.0842e-6 0.2231e-3

M1 = 36 M2 = 40 0.0131e-5 0.0458e-6 0.1460e-3

The third example is the case with u = �1 on �3. Other boundary conditions

are the same as in the �rst example. We do not expect that  belongs to H
2(
),
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because of singularities at the two top corners. However, for the discretized Stokes

and Navier-Stokes problems, we expect a H
2(
) solution due to implementation of

boundary conditions. This means that u drops to zero continuously along the vertical

sides x = �1; x = 1 from y = 1 to y = 1 � " for a small " > 0. Here, we chose

" = 0:15 for this example. Physically, this smoothing indicates that a small amount

of uid enters the cavity through the point (1; 1) and the same amount of uid leaves

the cavity through the point (�1; 1). This guarantees that the compatibility conditionR
� u � nds = 0 is satis�ed. In Figures 4.1 and 4.2, streamlines and vector �elds for the

third example are shown for M = 16; N = 12.

-�

6

?
�1

�2

�3

�4
1

1

-1

-1

Figure 1. Geometry of the driven cavity problem.
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Figure 2.1. Contour of the stream lines (case 1).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.2. Velocity vector �elds (case 1).
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Figure 3.1. Contour of the stream lines (case 2).
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Figure 3.2. Velocity vector �elds (case 2).
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Figure 4.1. Contour of the stream lines (case 3).
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Figure 4.2. Velocity vector �elds (case 3).
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