
A MODIFIED SELF-AVOIDING WALK MODEL

ON THE SQUARE LATTICE

WITH REFLECTING AND ABSORBING BARRIERS

JUNHO SONG

J. KSIAM Vol.4, No.2, 33-39, 2000

Abstract. Well known is the directed self-avoiding walk model on the square lattice

with reecting and absorbing barriers. We consider two models, namely, a pyramid

self-avoiding polygon model and a top and bottom pyramid polygon model, as sub-

collections of the model. We derive explicit formulas for the number of 2N -step

polygons in these models.

1. Introduction

An N -step self-avoiding walk w on the n-dimensional hypercubic lattice Zd is a

sequence

w = (0 = w(0); w(1); : : : ; w(N))

with w(i) 2 Zd, jw(i + 1) � w(i)j = 1 and w(i) 6= w(j) for i 6= j. Equal probability is

assigned to each N -step self-avoiding walk. A self-avoiding polygon is any self-avoiding

walk whose �nal site is a nearest neighbor of the initial site, augmented by the bond

joining the �nal site to the initial site. The self-avoiding walk model was �rst introduced

by chemists as a model of polymer molecules and has been studied by physicists as an

interesting model of critical phenomena. Also, it is of interest to probabilists as a

natural example of a non Markov process.

The mathematical problems of calculating the exact analytical properties of self-

avoiding walks are formidable. In e�orts to overcome the di�culties, a number of

modi�ed self-avoiding walk models have been actively investigated. It is hoped that

the studies on such modi�ed models may shed light on the properties of the full self-

avoiding walk model, and provides useful clues on how to approach the extremely

di�cult self-avoiding walk problem.

Most notable examples are the \spiralling self-avoiding walks" and the \directed

self-avoiding walks". In the spiralling self-avoiding walks, turns to speci�c directions

are prohibited, in addition to the self-avoiding condition. In the directed self-avoiding

walks, steps to speci�c directions are prohibited. There are the most obvious shortcom-

ing of the models. In the spiralling self-avoiding walk model, due to the very nature

of the model, the walker cannot double back and the resulting walks are very dense
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[1]. Whereas, in the directed self-avoiding walk model, the walker cannot reach certain

quarters of the plane: one quarter in \two-choice directed self-avoiding walks" and two

quarters in \three-choice directed self-avoiding walks" [6].

Although the self-avoiding polygons are a small collection of the self-avoiding walks,

the quantity of the ratio which is obtained by dividing the number of 2N -step self-

avoiding polygons by the number of 2N -step self-avoiding walks is of particular interest

since it represents the probability of return to the origin after 2N steps. There are

three classes of polygon problems whose exact solutions now exist: these are staircase

polygons [5], convex polygons [4] and row-convex polygons [2].

Consider self-avoiding walks in which the walker starts out from the origin and travels

over more than two quarters of the plane, winding clockwise around the origin. Such

a walk can be divided into several walks that traversed exactly two quarters. Thus,

each subwalk that traversed exactly two quarters might be regarded as a \base" of

the walk. That is the �rst reason why we would give a walker \two-choice direction"

and \reecting and absorbing barriers" as microscopic and macroscopic constraint in

addition to the self-avoiding condition. On the other hand, \two-choice direction"

constraint gives us a model in which most problems can be solved easily and exactly.

Moreover, it is possible to derive directly the generating function for the walks consisting

of several subwalks that traversed exactly two quarters.

In this paper, we consider a model that the walker may travel over some region

on the square lattice with reecting and absorbing barriers, performing two kinds of

two-choice directed self-avoiding walks. The walker starts out from the origin and may

take x+ or y+ steps until he comes across a reecting barrier. Thereafter if the walker

would arrive at a point of absorbing barrier, he should take x+ or y
�
steps from a

reecting barrier to the last point. Suppose that the walker tries to begin again at

the last point and goes on taking his x
�
or y

�
steps to another reecting barrier and

terminates at a horizontal line below the x-axis with his x
�

or y+ steps. It means

that such a walk could be connected with two kinds of two-choice directed self-avoiding

walks with reecting and absorbing barriers. And it is possible for the walker to travel

over more than two quarters of the plane. Let the last point be a lattice point that is

an intersection of the walks and a horizontal line y = �1, in which the walker should

pass by the reecting barrier, and let the endpoint be the origin. Then it becomes a

polygon problem. Therefore, we will investigate both a pyramid self-avoiding polygon

model and a top and bottom pyramid self-avoiding polygon model.

2. Preliminaries

The generating function G1(x+) for one-dimensional self-avoiding walks restrict- ed

to the x+ direction is

(1) G1(x+) =
1

1� x+

and the generating function G2(x+; y+) for two-choice directed self-avoiding walks in

the square lattice in which the walker is restricted only to take either x+ or y+ direction
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is

(2) G2(x+; y+) =
1

1� (x+ + y+)
:

It follows from (1) and (2) that

(3) G2(x+; y+) = G1(x+)G1[y+G1(x+)]:

The equation (3) implies that two-choice directed self-avoiding walks in the square lat-

tice are nothing but one-dimensional self-avoiding walks in which the walker is restricted

only to take upstairs [y+G1(x+)](�) direction. Let

sk(x+; y+) = G1(x+)[y+G1(x+]
k for k = 0; 1; 2; : : : ;(4)

Tr(x+; y+) =

rX
k=0

sk(x+; y+) for r = 0; 1; 2; : : : :(5)

Thus sk(x+; y+) is the generating function for the walks that start from the horizontal

line y = i and reach the horizontal line y = i+ k. We will use the equation (5) later.

3. Our Model

In this section, we consider a model for two-choice directed self-avoiding walks on

the square lattice with reecting and absorbing barriers. Let the horizontal line y = r

be a reecting barrier and let the horizontal line y = �m� 1 be an absorbing barrier,

where r and m are nonnegative integers. In this model, the walker who starts out from

the origin may take either x+ or y+ direction. The walker does or does not visit the

reecting barrier y = r. If the walker left the reecting barrier, he should have taken

x+ direction in the previous step. Once he leaves the reecting barrier, he must be at

a point in the horizontal line y = r � 1. Thereafter he may take any of x+ and y
�

directions. If the walker arrived at the absorbing barrier, he should have been in the

horizontal line y = �m in the previous step.

The Figure 1 is the diagram of a typical example of a two-choice directed self-avoiding

walk on the square lattice with reecting and absorbing barriers.
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Figure 1. An N -step walk
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It follows from the statements above that the generating function for the walks from

the origin to the horizontal line y = �m is given by

G(x+; y+; y�j r;�m) = Tr(x+; y+) + [sr(x+; y+)]x+y�[Tr+m�1(x+; y�)]

if r 6= 0, m 6= 0 and

G(x+; y+; y�j 0; 0) = T0(x+; y+)

and that the generating function for the walks from the origin to the absorbing barrier

is given by

f(x+; y+; y�j r;�m� 1) = [sr(x+; y+)]x+y�[sr+m�1(x+; y�)]y�

if r 6= 0, m 6= 0 and

f(x+; y+; y�j 0;�1) = s0(x+; y+)x+y+:

Thus the generating function for all walks in the model is

U(x+; y+; y�j r;�m� 1) = G(x+; y+; y�j r;�m) + f(x+; y+; y�j r;�m� 1):

Putting z = x+ = y+ = y
�
, we obtain that

G(zj r;�m) =

8<
:

1
1�2z

�
1� zr+1

(1�z)r
� z2r+m+2

(1�z)2r+m+1

�
if r 6= 0; m 6= 0

1
1�z

if r = 0; m = 0;

and that

f(zj r;�m� 1) =
z2r+m+2

(1� z)2r+m+1
:

To obtain the number cN (r;�m�1) of N -step walks, we evaluate the contour integral

cN (r;�m� 1) =
1

2�i

I
dz

zN+1
U(zjr;�m� 1)

along a small circle around the origin. The following identity is well-known (see, for

example, [p. 47, 7]):

nX
k=0

�
r + k � 1

k

�
2n�k =

nX
k=0

�
r + n

r + k

�
:

Using

lim
z!0

1

n!
(
d

dz
)(n)[(1 � 2z)�1(1� z)�r] =

nX
k=0

�
r + k � 1

k

�
2n�k =

nX
k=0

�
r + n

r + k

�

and

2

nX
k=0

�
r + n

r + k

�
�
�
r + n

r

�
=

nX
k=0

�
r + 1 + n

r + 1 + k

�
;
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we have a reasonably explicit formula for the number of N -step walks as follows:

cN (r;�m� 1) =

�
N

0

�
+

�
N

1

�
+ � � �+

�
N

r

�

+

�
N � 1

r + 1

�
+

�
N � 1

r + 2

�
+ � � �+

�
N � 1

2r +m

�

+

�
N � 2

2r +m

�
:

Therefore, if we let aN (r;�m � 1) denote the number of N -step walks that terminate

at a lattice point of the absorbing barrier, then we obtain

(6) aN (r;�m� 1) =

�
N � 2

2r +m

�
:

4. Pyramid self-avoiding polygons

In the (2N � 1)-step walks, the walker starts out from the origin and must pass by

some reecting barrier, y = r, to visit the point (N�r�1;�1). Next he should go back
to the vertical line x = 0 (actually, the point (0;�1)) using his remaining N � r � 1

steps only in the x
�
direction. Finally, taking one more step in the y+ direction, the

walker makes a 2N -step polygon. See a typical example of a 2N -step polygon in Figure

2.
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0

Figure 2. A (2N � 1)-step walk

First, observe that in any of this polygon, the number of x
�
-steps is just as many as

the number of x+-steps. Substituting x+x� for x+ in f(x+; y+; y�j r;�1)y+, summing

it up over r from 0 to 1, putting z = x+ = x
�
= y+ = y

�
, we obtain the generating

function for the polygons as follows:

(7) Gpsap(z) =
z4(1� z2)

(z2 + z � 1)(z2 � z � 1)
;

with a critical point at zc = (
p
5�1)=2. Notice that (7) coincides accidentally with one

of the results found by Lin et al [4] when they studied convex polygons on the square
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lattice. Evaluating the residues yields

a
psap
N =

1� (�1)N�3
2
p
5

h�p5 + 1

2

�N�3
+
�p5� 1

2

�N�3i

for N � 4.

The following identity is well-known (see, for example, [p. 10, 3]):

(8)

N�2X
r=0

�
N + r � 2

2r

�
=

1p
5

h�p5 + 1

2

�N�3
+
�p5� 1

2

�N�3i
;

which is the 2(N � 2)-th Fibonacci number. We have seen that

a
psap
2N =

N�2X
r=0

aN+r(r;�1)

=

N�2X
r=0

�
N + r � 2

2r

�
:

Therefore, the identity (8) holds. This is another way to prove the identity (8).

5. Top and bottom pyramid self-avoiding polygons

Let us consider 2N step walks that emanate from the origin, pass by two reecting

barriers y = r1 and y = r2, return to the origin. Such polygons always cross the

horizontal line y = �1. We want to subdivide such a polygon into two parts, one from

the origin to the last point on the line y = �1 and another one from the last point on

the line to the origin. Suppose that the �rst part (or top pyramid) has N1 steps and

thus the second part (or bottom pyramid) has 2N �N1 steps. And then the last point

is just (N1 � 2r1 � 1;�1) or (2N �N1 � 2r2 � 1;�1).
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Figure 3. A 2N -step top and bottom polygon
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Then, using equation (6), we have a reasonably explicit formula for the number of

2N -step polygons as follows:

a2N =

N�2X
r1=0

N�2�r1X
r2=0

aN1
(r1;�1)aN�N1

(r2;�1)

=

N�2X
r1=0

N�2�r1X
r2=0

�
N + r1 � r2 � 2

2r1

��
N + r2 � r1 � 2

2r2

�
:

Here is a table for a2N . The entries for 2N � 10 were veri�ed by drawing all of the

diagrams for 2N -step top and bottom pyramid self-avoiding polygons.

2N a2N
4 1

6 3

8 10

10 36

12 136

14 528

16 2080

18 8256

20 32896

50 35184376283136

100 39614081257132309534260330496
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