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DEGREE ELEVATION OF B{SPLINE CURVES AND

ITS MATRIX REPRESENTATION

BYUNG-GOOK LEE AND YUNBEOM PARK

Abstract. An algorithmic approach to degree elevation of B{spline curves is pre-

sented. The new algorithms are based on the blossoming process and its matrix

representation. The elevation method is introduced that consists of the following

steps: (a) decompose the B{spline curve into piecewise B�ezier curves, (b) degree el-

evate each B�ezier piece, and (c) compose the piecewise B�ezier curves into B{spline

curve.

1. Introduction

Degree elevation of B{spline curves are well understood and several algorithms are

published([10], [11], [12], [13], [14], [15]). From a software engineering point of view, it

is desirable to implement a simple and easy-to-understand algorithm. This approach

was taken by Piegl and Tiller([11], [12], [13]), who implemented the simplest algorithm;

they decomposed the B{spline curve into piecewise B�ezier curves, elevated the degree of

each B�ezier piece, and then composed the piecewise B�ezier curves into B{spline curves.

We describe here the modi�ed form of Piegl and Tiller's algorithm. The presented

procedure allow to elevate the degree from n to m in one step. The new algorithms are

based on the blossoming analysis ( [2], [8], [16], [17]) and matrix representation of the

process.

2. Degree Elevation

Since a B{spline curve is a piecewise polynomial curve, it must be possible to elevate

its degree from p to p+ r. That is, there must exist control points ~P and a knot vector
~U such that

C
n

P (u) = C
~n
~P
(u) =

~nX
i=0

~PiNi;p+r(u):

The curve Cn

P
(u) and C

~n
~P
(u) are the same geometrically and parametrically. The com-

puting of ~n, ~P and ~U is referred to as degree elevation. The knot vector ~U and number

of points ~n can easily be computed as follows.
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Assume that U has the form

U = fa; a; : : : ; a| {z }
p+1

; u1; : : : ; u1| {z }
m1

; : : : ; us; : : : ; us| {z }
ms

; b; b; : : : ; b| {z }
p+1

g

where the end knots a and b are repeated with multiplicity p+1 , the interior knots ui
are repeated with multiplicity mi and s is the number of distinct interior knots. Since

the curve Cn

P
(u) is Cp�mi�continuous at the knot of multiplicity mi, C

~n
~P
(u) must have

the same continuity. Consequently, the new vector must take the form

~U = fa; a; : : : ; a| {z }
p+r+1

; u1; : : : ; u1| {z }
m1+r

; : : : ; us; : : : ; us| {z }
ms+r

; b; b : : : ; b| {z }
p+r+1

g

which gives ~n = n+ (s+ 2)r.

The computation of ~P can be done in a number of di�erent ways, including solving

a system of linear equations([3]), combining some techniques of box splines with knot

insertion([14]), using blossoming analysis([10]), or approaching aspect of software engi-

neering ([11]). We provide a procedural method that combine the blossoming analysis

and the software engineering aspect. The procedure can be summarized as follows:

(1) Decompose the B{spline curve into piecewise B�ezier curves.

(2) Degree elevate each B�ezier piece.

(3) Make the B{spline curve from the piecewise B�ezier segment.

3. Curve Decomposition

Curve decomposition is normally done via knot insertion. This is very convenient

in curve design when it is necessary to have local control. In the case of a nonuniform

B{spline curve a new knot can be inserted to increase the number of control points

and the number of curve segments. Consider the cubic B{spline curve in Fig. 1 with

blossoming notation. Here, the B�ezier segments are extracted by inserting knot 1 two

times. From these we can get �rst B�ezier piece BG(0; 0; 0), BG(0; 0; 1), BG(0; 1; 1), and

BG(1; 1; 1), and second B�ezier piece BG(1; 1; 1), BG(1; 1; 3), BG(1; 3; 3), and BG(3; 3; 3).
The multia�ne and symmetry property can be used to compute new blossom values

from old ones. For example, consider �nding the value BG(0; 1; 1), BG(1; 1; 1), and
BG(1; 1; 3).

BG(0; 1; 1) = 2=3BG(0; 1; 0) + 1=3BG(0; 1; 3) = 2=3BG(0; 0; 1) + 1=3BG(0; 1; 3)

BG(1; 1; 1) = 2=3BG(1; 0; 1) + 1=3BG(1; 3; 1) = 2=3BG(0; 1; 1) + 1=3BG(1; 1; 3)

= 4=9BG(0; 0; 1) + 4=9BG(0; 1; 3) + 1=9BG(1; 3; 3)

BG(1; 1; 3) = 2=3BG(0; 1; 3) + 1=3BG(3; 1; 3) = 2=3BG(0; 1; 3) + 1=3BG(1; 3; 3):

The Decomposition algorithm in Fig. 1 is expressed in a matrix form as

Q = MdP
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Figure 1. Curve decomposition of a cubic B{spline curve. The control

polygon(circle) after inserting knot u = 1 two times into the knot vector

(0; 0; 0; 0; 1; 3; 3; 3; 3).

where

Q =

0
BBBBBBBB@

BG(0; 0; 0)

BG(0; 0; 1)

BG(0; 1; 1)

BG(1; 1; 1)

BG(1; 1; 3)

BG(1; 3; 3)

BG(3; 3; 3)

1
CCCCCCCCA
;M

d
=

0
BBBBBBBB@

1 0 0 0 0

0 1 0 0 0

0 2=3 1=3 0 0

0 4=9 4=9 1=9 0

0 0 2=3 1=3 0

0 0 0 1 0

0 0 0 0 1

1
CCCCCCCCA

and P =

0
BBBB@

BG(0; 0; 0)

BG(0; 0; 1)

BG(0; 1; 3)

BG(1; 3; 3)

BG(3; 3; 3)

1
CCCCA
:

Next we give detailed pseudocode to compute the decomposition matrix Md. It uses

a local array V of size s to store the ith distinct interior knot values and another one

M of size s to store the multiplicity.

Make DecomposeBsplineMatrix(U , m, n, p)

// Input: Knots vector U = fa; a; : : : ; a; u1; : : : ; u1; : : : ; us; : : : ; us; b; b; : : : ; bg,
// number of knots m+ 1,

// number of control points n+ 1 and degree p

// Output: (ps+ p+ 1)� (n+ 1) matrix Md

(* In case of Bezier curve *)

if (n = p) exit;

(* initialize some variables *)

s = 1; t = 1; l = p;
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(* initialize Md matrix *)

for (i = 0 to n by 1)

for (j = 0 to n by 1)

if (i = j) Md[i][j] = 1; else Md[i][j] = 0;

(* compute knot multiplicity *)

V [s] = U [p+ 1]; M [s] = 1;

for (i = p+ 2 to n by 1)

if (V [s] = U [i]) M [s] = M [s] + 1;

else s = s+ 1; V [s] = U [i]; M [s] = 1;

endif

endfor

(* make Md matrix *)

for (i = 1 to s by 1)

l = l +M [i];

for (j = M [i] to p� 1 by 1)

KnotsInsertion (U , l, V [i], n, n+ t, p);

for (k = m+ t to l + 1 by �1) U [k] = U [k � 1];

U [l] = V [i]; l = l + 1; t = t+ 1;

endfor

endfor

KnotsInsertion(U , l, v, n, k, p)

// Input: Knots vector U , new knot v 2 [ul; ul+1), and degree p

// Output: (n+ 1)� (k + 1) matrix Md

for (i = l � p+ 1 to l � 1 by 1)

� = (v � U [i])=(U [i + p]� U [i]);

for (j = 0 to n by 1)

T [i][j] = (1� �)Md[i� 1][j] + �Md[i][j];

endfor

endfor

for (i = k to l by �1)
for (j = 0 to n by 1) Md[i][j] = Md[i� 1][j];

for (i = l � p+ 1 to l � 1 by 1)

for (j = 0 to n by 1) Md[i][j] = T [i][j];

4. Degree Elevation of B�ezier Curves

The degree elevation of B�ezier curves is well understood and well documented([7]).

As a �rst step, consider raising the degree of the B�ezier curve by one. We can show that

new control points are obtained from the old polygon by piecewise linear interpolation
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at the parameter values j=(n + 1). We may repeat this process and obtain a sequence

of control points. After r degree elevation, we have a linear system R = Tn;rQ where

the (n+ r + 1)� (n+ 1) matrix Tn;r = fti;jg has elements([9])

(1) ti+j;i =

�
n

i

��
r

j

�
�
n+r
i+j

� ;
�

i = 0; 1; : : : ; n

j = 0; 1; : : : ; r:

B�ezier curves are known to be a special polynomial type of B{spline curve with the

knot vector given by n knots at a and n knots at b. By the dual functional property

the control vertices Qi for the B�ezier representation of the curve are given in terms

of blossom by Qi = BG(a; a; : : : ; a; b; b; : : : ; b) where a appears as an argument (n� i)

times and b appears i times. For the sake of simplicity, consider the cubic case. We

begin with the control vertices from the blossom representations BG(a; a; a), BG(a; a; b),

BG(a; b; b), and BG(b; b; b). From these we wish to raise the degree of the B�ezier curve

by two. We can represent the new B�ezier curve as having a knot vector with n + 2

knots at a and another (n+ 2) at b as shown in Fig. 2.

R0 = BG(a; a; a; a; a) = BG(a; a; a)

R1 = BG(a; a; a; a; b) = 2=5BG(a; a; a) + 3=5BG(a; a; b)

R2 = BG(a; a; a; b; b) = 1=10BG(a; a; a) + 3=5BG(a; a; b) + 3=10BG(a; b; b)

R3 = BG(a; a; b; b; b) = 3=10BG(a; a; b) + 3=5BG(a; b; b) + 1=10BG(b; b; b)

R4 = BG(a; b; b; b; b) = 3=5BG(a; b; b) + 2=5BG(b; b; b)

R5 = BG(b; b; b; b; b) = BG(b; b; b)

�

�

�
� �

�
�

�

�

(0,0,0,0,0)

(0,0,0,0,1)

(0,0,0,1,1)

(0,0,1,1,1)
(0,1,1,1,1)

(1,1,1,1,1)

(1,1,1,1,3)

(1,1,1,3,3)

(1,1,3,3,3)

(1,3,3,3,3)

(3,3,3,3,3)

Figure 2. Degree elevation each B�ezier piece(circle).
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The degree elevation algorithm in Fig. 2 is expressed in a matrix form as

R = MeQ

where

R =

0
BBBBBBBBBBBBBB@

BG(0; 0; 0; 0; 0)
BG(0; 0; 0; 0; 1)
BG(0; 0; 0; 1; 1)
BG(0; 0; 1; 1; 1)
BG(0; 1; 1; 1; 1)
BG(1; 1; 1; 1; 1)
BG(1; 1; 1; 1; 3)
BG(1; 1; 1; 3; 3)
BG(1; 1; 3; 3; 3)
BG(1; 3; 3; 3; 3)
BG(3; 3; 3; 3; 3)

1
CCCCCCCCCCCCCCA

;Me =

0
BBBBBBBBBBBBBB@

1 0 0 0 0 0 0
2=5 3=5 0 0 0 0 0
1=10 3=5 3=10 0 0 0 0
0 3=10 3=5 1=10 0 0 0
0 0 3=5 2=5 0 0 0
0 0 0 1 0 0 0
0 0 0 2=5 3=5 0 0
0 0 0 1=10 3=5 3=10 0
0 0 0 0 3=10 3=5 1=10
0 0 0 0 0 3=5 2=5
0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCA

andQ =

0
BBBBBBB@

BG(0; 0; 0)
BG(0; 0; 1)
BG(0; 1; 1)
BG(1; 1; 1)
BG(1; 1; 3)
BG(1; 3; 3)
BG(3; 3; 3)

1
CCCCCCCA
:

The following algorithm compute degree elevation Me matrix.

Make ElevateBezierMatrix(p, r, s)

// Input: Degree p, elevation degree r and number of distinct interior knots s

// Output: f(p+ r)(s+ 1) + 1g � (ps+ p+ 1) matrix Me

div = 1;

for (i = 1 to r by 1) div = div � (p+ i);

M [0] = 1;

for (i = 0 to p by 1)

for (j = 1 to r by 1) M [j] = M [j] +M [j � 1];

for (j = 0 to r by 1)

left = 1;

for (k = 1 to j by 1) left = left� (r � k + 1);

right = 1;

for (k = 1 to r � j by 1) right = right� (p� i+ k);

T [i+ j][i] = left�M [j] � right=div;

endfor

endfor

Me[0][0] = T [0][0];

for (i = 0 to s by 1)

for (j = 1 to p+ r by 1)

for (k = 0 to p by 1) Me[j + (p+ r)i][(k + p)i] = T [j][k];

5. Curve Composition

Now, we consider the knot removal algorithm. It is the reverse process of inserting

a knot. While knot insertion is a precise procedure, i.e. the knot-inserted curve is pre-

cisely the same as the original one, knot removal, in general, produces an approximation

of the original curve. Clearly, after a knot is inserted, it can be removed precisely.
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Figure 3. Composition of the piecewise B�ezier curves with the knot

vector (0; 0; 0; 0; 0; 0; 1; 1; 1; 3; 3; 3; 3; 3; 3).

Consider the curve shown in Fig. 3. The knot u = 1 is removable two times since the

curve is C2-continuous at u = 1. Curve composition is the inverse of decomposition.

In Fig. 3, it can be expressed in a linear equation as

R = MD
~P

where

R =

0
BBBBBBBBBBBBBB@

BG(0; 0; 0; 0; 0)
BG(0; 0; 0; 0; 1)
BG(0; 0; 0; 1; 1)
BG(0; 0; 1; 1; 1)
BG(0; 1; 1; 1; 1)
BG(1; 1; 1; 1; 1)
BG(1; 1; 1; 1; 3)
BG(1; 1; 1; 3; 3)
BG(1; 1; 3; 3; 3)
BG(1; 3; 3; 3; 3)
BG(3; 3; 3; 3; 3)

1
CCCCCCCCCCCCCCA

;MD =

0
BBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 2=3 1=3 0 0 0 0
0 0 0 4=9 4=9 1=9 0 0 0
0 0 0 0 2=3 1=3 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCA

and ~P =

0
BBBBBBBBBB@

BG(0; 0; 0; 0; 0)
BG(0; 0; 0; 0; 1)
BG(0; 0; 0; 1; 1)
BG(0; 0; 1; 1; 1)
BG(0; 1; 1; 1; 3)
BG(1; 1; 1; 3; 3)
BG(1; 1; 3; 3; 3)
BG(1; 3; 3; 3; 3)
BG(3; 3; 3; 3; 3)

1
CCCCCCCCCCA

:

Because MD has full column rank and M
t

D
MD is non-singular, (M t

D
MD)

�1
M

t

D
is a

left inverse of the matrix MD([18]). Therefore the consistent equation R = MD
~P have

the unique solution
~P = McR

where Mc = (M t

D
MD)

�1
M

t

D
. This shows that

(2) R = MD(M
t

DMD)
�1
M

t

DR:
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We write down the algorithm for the degree elevation of a B{spline curve in a short-

hand notation.

(1) Make DecomposeBsplineMatrix(knots, m, n, p) : Md

with knots= fa; a; : : : ; a| {z }
p+1

; u1; : : : ; u1| {z }
m1

; : : : ; us; : : : ; us| {z }
ms

; b; b; : : : ; b| {z }
p+1

g

(2) Make ElevateBezierMatrix(p, r, s) : Me

(3) Make DecomposeBsplineMatrix(knots, m+(s+2)r, n+(s+2)r, p+r) : MD

with knots= fa; a; : : : ; a| {z }
p+r+1

; u1; : : : ; u1| {z }
m1+r

; : : : ; us; : : : ; us| {z }
ms+r

; b; b; : : : ; b| {z }
p+r+1

g

Then,

(3) ~P = MP

where M = McMeMd.
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