GEEEBANSaSE CE A3d A48 299-306, 2000.11
J. of Korea Society of Industrial Application, Vol.3, No.4, 299-306, November. 2000

BT ol ZaQl A 2" FAF A
Holg 45 9 ZEE {§A
A Study on High-Level Pipeline Synthesis System :
Data Path Synthesis and Control Synthesis!)

HEH"
Jong-Tae Kim

<8 o>

| 4 A% B5E doly A= ¥4

of ek Agolch @Al W] AAFE

4 e REE Jojo JY& FAsEd no e AAE

Aste] dlolE] A2 txlel JA3 TEE U J9e Fia

o GalEE dolLebel A5 EHA £TE FHAL o ErE

g Al stelA HAn A5el volwetel e A u & A B

A3k A AG stelA HA uge sholmeklg FABE A%
Aol T 7hA WA AT

O

[

o] =& & et el

ﬁ].
W ZEE P9 F
2E

=

&
%
t]

(9.0,

Key Words - High-level Synthesis, Pipeline Synthesis

1. Introduction tasks of data path synthesis include

Pipelining 1s a widely used approach for scheduling and resource allocation[1].
designing high performance digital circuits. Scheduling is the process of partitioning the
As design size Increases, pipelined input specification so that each partition
architectures become quite complex and thus corresponds to a single time step, or a
automated design tools in high level for control step in execution and assigns
pipeline ASICs are necessary to cope with operations in the input graph to time steps
such complexity and explore the design space while observing the data precedence and
efficiently. Task of high-level synthesis of satisfying constraints. At this point,
pipelines may be divided into data path high-level control specifications can be found.
synthesis and control synthesis. The main Currently most high-level synthesis systems

A3, A vrdigrn A7 A A e F S, Fala, Associate Professor, School of Electrical and Computer
119 Engineering
A7 A AT HHEF 300 (This study is supported by the academic research
email | jtkim@yurnim.skku.ac.kr fund of Ministry of Education, Republic of Korea.)

- @IS =

A9 GE ol el FrAA Aol wP} A

ignore the effects of the control space and
control synthesis usually follows data path
synthesis, but optimal design can be
guaranteed only 1if both processes occur
simultaneously. Therefore 1t 1s necessary to
combine data path and control synthesis.
The main objective for this work 1s to
provide the designer with a more precise and
efficient tool for design space exploration.
Early works|[2] in pipeline design focused
on either scheduling and controlling existing
pipelines or physically construction of stages
with fixed functions. Pipeline stages are
physically separated (structural pipelining).
This may force non-optimal use or sharing

of resources. The data path synthesis
program we developed, called Sehwalll,
presents some theoretical foundations of
pipelined synthesis. In Sehwa, the

logical-stage concept (functional pipelining)
was used. A logical stage corresponds to the
set of operators, registers, and multiplexors
which are activated during the same clock
cycle. Two logical stages may share the
same resource, which makes more complex
and efficient sharing of resources possible.
Other works on the scheduling of pipeline
data paths can be found in [3][4].

Most of the previous work done 1n the
control synthesis at the register transfer level

was for non—pipeline systems. The
CONSPECI[5] dealt with the automatic
production of control specifications from

high-level behavioral descriptions in control
and timing graph form and 1s designed for
interface processors, Bridgel[6] is a high level

synthesis sytem developed at AT&T Bell
Laboratory and performs data path and
control path allocation for non-pipeline
systems. We developed a method to
automatically synthesize time—stationary
controller for pipeline data paths.|7]

To the best of knowledge, no

comprehensive work was been published on
the high-level pipeline synthesis which
explores both data path and control design
space.

2. Overview of Pipeline Synthesis System
The design tasks of high-level synthesis

dojg] 2 % FTESH ¥A

of pipelines include scheduling, resource
allocation, and generation of a control
specification.

2.1 Data Path Synthesis

The main design tasks of Sehwa are
scheduling and resource allocation in such a
way that the result preserves the behavior of
the ornginal data flow and meets all the
design constraints in the following way. First
the result of partitioming a data flow into
time steps must reserve the original data
precedence between operations in the input
data flow graph to preserve the correctness
of the design. Second the scheduling must be
performed in such a way that each subtask
can be completed within a given clock cycle
time including the stage latch delays. And
third, the resource requirement of each
subtask never goes over the total available
resources at any given time step and the
sum of the resource requirements of the
subtasks must not exceed the total available
resources.

Sehwa 1s comprised of two classes of
scheduling algorithms. They are polynomial-
time scheduling algorithm and exhaustive
algorithm. The polynomial time scheduling
algorithm 1s further decomposed into feasible,

maximal, and non-overlap schedulings.
FFeasible scheduling schedules a data flow
graph with a fixed latency, a maximum

stage-time limit (or a given clock cycle), and
constraints on either the total cost of the

pipeline implementation or the minimum
required performance. Maximal scheduling
schedules a data flow graph as short as

possible with only a maximum stage-time
limit, assuming there is no cost constraint (in
this case, the latency is always 1), and
non-overlap scheduling schedules a data flow
graph as short as possible with a maximum
stage-time limit and constraints on the total
number of available modules. No execution
overlap 1s considered.

The outline of the synthesis procedure
used by Sehwa 1S as follows.
Maximal/Non-overlap synthesis is done to
establish the boundary of the possible design
space before cost or performance constraint

= 300 -

PRERBE RSN B @iw Cat A3¥ A4E (2000.11)

synthesis routines are invoked for the actual
synthesis of the pipeline. Maximal synthesis
produces the fastest design with the latency
of 1 and minimal synthesis produces the
cheapest and slowest design with the latency
equal to the depth of the pipe. Then a range
of designs close to a desired goal are
produced wusing fast feasible scheduling
procedures which i1s the main scheduling
algorithm and is used to search the design
space under cost or performance constraints.
The design tasks are divide into two cases
depending on the design constraint: design
the fastest pipeline within the cost constraint,
or design the cheapest pipeline that satisfies
the minimum required performance.

An intelligent design analysis procedure is
used to guide the design process toward
certain optimal direction. The user can
perform exhaustive search if none of the
earlier designs meet his needs. The current
best design found so far provides a tight
bound on the design space for the exhaustive
search. If none of the pipelined design meets
the design constraints, Sehwa will design a
non-pipelined data path using the same
scheduling and resource allocation algorithms.
Figure 1 depicts the design boundary for a
pipeline design of a given data flow graph
and the design search space is bounded by
the cheapest design (point B) and the fastest
design (point A). If the total cost is limited,
point C 1s the optimal design. If the
minimum required performance is given, point
D 1s the cheapest design. The feasible
design space 1s enclosed in the rectangle of
the points C and D. While the scheduling is
repeated with different cost and performance
constraints, we only need to search the
feasible space inside the possible design
space.

2.2 Control Synthesis

Abstract control requirements such as the
mitiation latency and the number of clock
cycles per task can be obtained from the
results of scheduling and resource allocation.
Ideally, we need to design the controller in
parallel with the data path in order to
perform optimal control-data path design

cost T

Minlmum
Hequired
(expensive) Speed .
1 2 |
1 - -— H
C Max | mum
Feasible Al lowed
Das i gn Cost
Space
@
D Possible
Design
Eh— e m—i
(cheap) | - —
(siow) Speed

(fast)

Figure 1. Design space boundary
tradeoff. However, this requires a complete

understanding of the interaction between the
two components and needs to be studied and
experimented further.

The controller i1s modeled as a Moore
style Finite State Machine (FSM) in which
state memory holds its present state, and the
combinational parts decide the next state and
the primary output functions. The control
specification procedure consists of two major
steps: state decision, and state transition.
The input 1s a scheduled data flow graph
(DFG) which shows operator-to-time step
assignments and interconnects between
operations. The output 1s a FSM specification
in the form of a state table. In the remainder
of this section, we describe these steps and
present our approach to solving each one.
The detailed description on the control
synthesis can be found in [7].

First the mutual exclusion set (MES) is
identified for given time step i. A set M of
nodes 1s said to be a MES if all the nodes
in M are pairwise-mutually exclusive and M
is not included in any larger MES M'. MESs
are the maximal groups of mutually exclusive
operations within a given time step. l.et My,
Mis---, M;, denote the MES covering time
step i, a Possible Execution Mode or PEM,
P 1s defined as a set of n operations, one
from each MES. P; = {oi-,0n|l oOn EMip
h=1,--n}. We will denote by P;;, Piz-, the
different PEM's 1in time step 1. Next, we find
sets of operations P;;, PEM, which can be
executed concurrently in each time step by
picking one operation from each MES and
combining them. Thus, each P;; represents a

= I =

A9 45 sholstelel A Al Ao ek o dloly AR YW REE §H4

subset of nodes that can be executed iIn
parallel during time step 1. Since the schedule
1s pipelined, time steps i, (+L, i+ZL -, are
overlapping and therefore, a state can now
be, defined as follows: Given 1<i<[,6 a
state St 1s defined as a set of PEM's
corresponding to overlapping ume steps |,

(+L, i+t2L . S = {Pwr| Y Pri, PannSS: k
mod L = m mod [= i}, and S; is not
mcluded in any larger state S;'. We will

denote by Si;, Sis -, Sini all the states that
can be generated by different combinations of
PEM's in ¢ and the time steps that overlap
with 1it, and n; 1s the number of such
different combinations. Since 1<i<L, we
can define groups of states Gy, Go -, G-,
(71 such that G; = {Si;, 1<5<n;).

After 1dentifying the states, we need to
determine the state transitions. Given a
CDFG pipeline-scheduled with a latency L,
we observe that state transitions occur
between adjacent groups of states in the
following sequence: Gy — G2 ... Gi — Gy ...
Gii. — Gy, This 1s mainly due to the pipelined
nature of the scheduling and i1s shown in
Figure 2. This 1s a key property in our
optimization scheme, as will be discussed
later. Another important factor affecting the
control specifications are the distribution
nodes (D). If the present state has m D
nodes, there are 2" possible combinations of
input conditions. Given a particular state, the
next state 1s the one which has all the
compatible (i.e. not mutually exclusive) nodes

of the present state. We ' find compatible
Tisks

||||||||||||||||||||||

:§F4£F5§ F6 @.@

11 [F1|F2 [FafFa

12 F‘-IE

3 e EEREE
a1/ ladlag|as as a6, vies
Figure 2. Overall timing and state
transitions in a pipelined system
nodes by searching only the PEMs

corresponding to the next time step within

states in the next group.

3. Unification of Data Path and Control
Synthesis

The main objective for this work 1s to
provide the designer with a more precise and
efficient tool for design space exploration.
The use of automatic synthesis permits the
designer to examine a large number of
non-inferior designs under various design
constraints mn a relatively short period of
time. From the set of possible solutions,
the design that best optimizes the designer’s
objective function can be selected. Once a
pipeline schedule and a operation allocation
are obtained, the RT implementation must be
completed 1n order to compute the total cost.
The total cost includes operators,
multiplexors, latches, controller, and wiring
space. It 1s necessary to consider the total
cost in order for the pipeline synthesis
system to do the following: compare the total
cost and speed of candidate solutions and
choose the optimal solution, and determine
valid design search space. Using fewer
operators for a cheap data path will increase
the number of latches and multiplexors.
This 1s because sharing operators requires
more input/output multiplexors (or buses) and
more latches to store values which cannot be
consumed at the next clock cycle after they
are produced. The area and delay of
controllers mainly depend on the following
factors. Iirst, the number of time steps in
the pipeline schedule (pipe size in our
definition), longer the number of time steps,
larger the number of time steps in the
overlapped time steps. Second, the number of
conditional branches existing in the input
behavior and where those conditional
constructs are scheduled. If there are many
conditional branches scheduled in the
overlapped time steps, then the number of
states 1s increased significantly and therefore,
the controller is very expensive.

3.1 Cost constrained Synthesis
The objective of this cost constrained
synthesis 1s to find the design which is the

< s =

9 B 0E P M1 B i 38 A3 Al4E (2000.11)

fastest pipeline within the given cost
constraint. Thus, the cost constrained
synthesis routine starts with the minimum
possible latency which is possible within the
given data path cost constraint, since the
smaller latency always results 1n faster
design, as compared to designs with larger
latency. After determining all the possible
stage times (and make sorted list from
smallest to largest), scheduling begins with
the smallest stage time. Both data path and
controller —are synthesized to produce
RT-level design according to the resulting
schedule. The cost and delay of data path
and controller are calculated and the cost of
the current solution i1s compared with the
given cost constraint. If the solution 1s
feasible, (i.e., within cost constraint), then
two actions are taken: put the solution in the
buffer to be evaluated later and, compare the
delay of the current design with the next
possible stage time. If it is bigger, then do
synthesis with next small stage time
(reiterate the loop). Otherwise the following
steps will carry out (break out of the loop).
This second action is taken to reduce the
design space search in minimal because if
the delay of the current solution is less than
the next possible stage time the new
solutions found from the next iteration are
always inferior (i.e., larger delay) to the
previous solution of smaller stage time. Next,
choose the fastest design among the possible
solutions in the buffer as a solution and
analyze it and determine whether there will
be any improvement by providing more
modules. In cost constrained synthesis, there
are module counters associated with each
module type that counts the operations that
has been delayed to some later time steps
only due to the resource limit. If any of
these counter values 1s a positive number,
the total number of modules allocated to that
type is increased by the counter value as
long as addition of modules does not violated
the data path cost constraint. This might
result in finding shorter schedule. However,

if no solution 1s found, the latency is
incremented or readjust data path cost
constraint within the total cost constraint,

and the possible stage times are again
considered with the new latency. Increasing
the latency enables more sharing of
resources, thereby, reducing the total operator
cost, but increasing the number of muxes
used. These processes are repeated until a
suitable solution is found. The outline of the
new cost constrained synthesis procedure is
shown in Figure 3. The control synthesis is
incorporated into the cost constrained
synthesis in Sehwa.

3.2 Performance Constrained Synthesis
The aim of performance constrained
synthesis 1s to find the cheapest design with
the mmimum required performance as design
constraint. Thus, scheduling starts with the
maximum possible latency. All the possible
stage times are determined and scheduling
starts with the smallest stage time. Data
path and controller are synthesized to
produce RT-level design according to the
resulting schedule. The cost and delay of the
design are computed and the delay 1is
compared with the given total performance
constraint. If the delay of the current design
is within the total performance constraint, put
the solution in the solution buffer and

Compute the minimum possible latency

e -

For all the possible stage times, do scheuling

;

Synthesize the dala path and the controlles

'

Compute the cost and delay of the solutlon

Constraln

Put the solution In the bulfer for all stage

tima

o
ax! stag
Im

NO

YES

Increment lalency or
Raadjust the data path
cosl constraint

Parformancea
anhancemant
possible?

Raport the fastast design
wlithin cost constraint

Figure 3. Cost constrained synthesis

Add modules within
cost constraint

- 303 -

B9 gpolell A e A Ao dojy A YW REH 34

increment the latency to search for a cheaper
solution since the feasible solution is already
found. If the condition 1s not met,
resynthesis begins with next small stage
time within the given performance constraint.
If no feasible solution is found, the latency is
decremented (i1.e., a faster design is sought).
Using smaller latency will require more
modules to be allocated for scheduling, thus
increasing the performance, but it 1s more
expensive. This is repeated until possible
solutions are found. If solutions are found,
choose the cheapest design satisfying the
overall performance constraint as the

Compule the maximum possible latency I

e .

For all the possible ntﬂin times, do scheuling |

Synthasize the data path and the contioller

v e

Compule the cost and delay of the solution

daolay
<

parformance

constralnt

¥
Pul the solution In the buflar

NO

& YES

lor all stage

Daciamant laten
botter, \NO~ 8ty no or
su: ?I' 5”'”{,‘“" Aead|usl the data path

'fl, i parformance constiaini
YES ‘
Increment the latency Call cost- constrained synthesls I
Choose chaapast design as the solutlon

Figure 4. Performance-constrained synthesis

candidate for the solution. Cost constrained
synthesis routine is invoked once to look for
a cheaper design with the cost for the
solution candidate as its cost constraint and
it 1s appended to the solution set. Finally, the

cheapest design within the performance
constraint 1s selected as a solution. Figure 4
shows an outline of the performance

constrained synthesis. The control synthesis
1Is incorporated into the performance

constramned synthesis in Sehwa.

4. Experiments

In this section, we presenl some
experimental results which were obtained by
applying our approach to two design
examples. The first example is from [1], and
the second i1s a quadratic equation.

The data flow graph of the first example
1s shown 1n Figureb. We performed high-level
pipeline synthesis with speed constraint,
Figure 6 shows the area vs. the delay of the
design points generated by synthesis routines.
In the second example we assume that a, b,

+2 1 Ji) ()
(0) {

(31 (1
o4 2)
D3 [
-5 (10} MO -4 M &)20 -4 [21)
{110}
o2 o 14 112
(rea) oo 110)
oo < (N7
(10)
41 (L1}
'--.‘_-_---
4% {{a)
(1)
-8 ’ #J
(30) (31)
olll (K1

*8 o)

o
L

Figure 5. Data flow graph for example 1

and ¢ in the equation ax’+bx+c=0 are
8-bit integers so that the number of
iterations to compute the square root is 7.
We unrolled the loop completely and ran
synthesis routines with both cost and speed

constraints. Figure 7 shows the possible
design points and the example of speed
constrained synthesis with the initiation

interval of 100 and the design point D is

304

ORERE RIS M B e A A3 A4 (2000.11)

vvvvv

Cost

¢ Design pants

0 : i 4 .] Pipeline
0 0 100 150 20 260 o M¥aton interval

Figure 7. Speed constrained synthesis result
of quadratic equation example

1qxn | ¢ Design ponts

ﬂ ' i i i i Hﬂﬂﬁﬂ
0 0 0 1 ap 2p xpiatoninend

Figure 8. Cost constrained synthesis result of
quadratic equation example

selected as a solution in the design space
which i1s the cheapest design among the
possible solutions. We also performed cost
constrained synthesis with the cost of 12,000
and the result is shown 1n Figure 8. The
solution is found in the design point C’
which is the fastest among the possible
solutions.

With two design examples, we cannot
claim that our synthesis system can
guarantee to find the optimal design every
time. We rather say that integration of data
path and control syntheses can search the
design space more efficiently to find the
better design. Clearly more experiments must
be done in order to better understand the
interaction between data path and control,
and access the effect of the latter on the
overall design process.

5. Conclusions

Nowadays, there is a high demand for
high-speed computing with limited resources
and for fast design of systems while
guaranteeing their correctness. Pipelining has
been a good methodology for designing fast
digital circuits, but pipeline design i1s usually
far more complex than nonpipeline design
due to the execution overlap. Automated
design tools for pipeline designs are
necessary to cope with such complexity and
explore the design space efficiently. In this
paper we have addressed the problem of
high-level pipeline synthesis and investigated
of both data path and control design space.
The main objective of this research is to
provide designer with a more precise and
efficient tool for design space exploration.
We modified Sehwa’s synthesis routines to
be incorporated with control synthesis engine
so that the both data path and control design
spaces are explored. This effort leads one
step forward to developing a unified
methodology for combined data path and
control synthesis of pipelined system.

Reference

1) N. Park and A. Parker, "Sehwa: a
software package for synthesis of pipelines
from behavioral specifications,” IEEE Trans.
on CAD, 7(3): 356-370, March 1988.

2) E. Davidson, "The design and control of
pipelined function generators,” in Proc. of
1971 International IEEE Conf. on Systems,
Networks, and Computers, pp. 19-21, 1971.

3) E. Girczyce, "Loop winding - a data flow
approach to functional pipelining,” in Proc.
ISCAS, IEEE, May 198&7.

Cosl 3000

2500

2000

1500 F

000

g 20 30 440 50 60 1o initiation interal

Figure 6. Pipeline synthesis results for
example 1.

= BRI =

#9053 shol kel FAAAge) ek AT dole AR W &

4) H. Lee, S. Hwang, "Design of a high-level
synthesis system for automatic generation of
pipeline data path”, J. of KITE, 31(3),
pp53-67, March 1994.

5) S. Hayati and A. Parker, "Automatic
Production of Controller Spectfications from
Control and Timing Behavioral Descriptions”, -
imm Proc. of 26th Design Automation
Conference, pp. 75-80, June 1989.

6) C. Tseng et al, "Bridge: a Versatile
Behavioral Synthesis System,” in Proc. of 25th
Design Automation Conference, pp.415-420, June
1988.

7) J.'T. Kim, FF.Kurdahi, N. Park, "System-level
time-stationary control synthesis for pipelined
data paths”, VLSI Design, pp. 159-180, 9(2),
April 1999,

(200041 698 F4, 20008 119222 a9)

3(}6

