138/ doj] §8& A8 938y 74 47

dolt] $4& AT G4FEY 9 AF
A Study of Multi-Target tracking for Radar application
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ABSTRACT

This paper introduced a scheme for finding an optimal association matrix that
represents the relationships between the measurements and tracks in multi-target
tracking of Radar system. We considered the relationships between targets and
measurements as MRF and assumed a priori of the associations as a Gibbs distribution.
Based on these assumptions, it was possible to reduce the MAP estimate of the
association matrix to the energy minimization problem. After then, we defined an
energy function over the measurement space, that may incorporate most of the

important natural constraints.

I. Introduction been well studied in the past, much of this

The primary pupose of a multi-target previous work assumes that the particular

tracking(MTT) system 1is to provide an
accurate estimate of the target position and
velocity from the measurement data in a field
of view. Naturally, the performance of this
system is  inherently limited by the

target corresponding to each observation is
known. Recently, with the proliferation of
surveillance systems and their increased
sophistication, the tools for designing
algorithms for data association have heen
announced.

In this paper, we derive the new model for
data association which reflects the natural
constraints of the MTT problem and convert
the derived model into the minimization
problem of energy function by MAP
estimator[1]. The coefficients of energy
function is calculated by Lagrange
multiplier,[2] and local dual theory(3].

measurement inaccuracy and source
uncertainty which arises from the presence of
missed detection, false alarm, emergence of
new targets into the surveillance region and
disappearance of old targets from the
surveillance region. Therefore, it is difficult to
determine precisely which target corresponds
to each of the closely spaced measurements.
Although trajectory estimation problems have
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II. Problem Formulation and
Energy Function

Fig.1 shows the overall system of multi-target
tracking. This system consists of three blocks:
acquisition, association, and prediction. The
purpose of the acquisition is to determine the
initial starting position of the tracking. After
this stage, the association and prediction
interactively determine the tracks. Qur primary
concern is the association part that must
determine the actual measurement and target
pair, given the measurements and the predicted

gate centers.
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Fig. 1. An overall scheme for target tracking
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Let m and n be the number of measurements

and targets, respectively, in a surveillance

region. Then the validation matrix £2 [3] is :
Q:{wl,le[l,m],te[O,n]} (1)

where the first column denotes clutter and

always wj,=1(j€[1, m]). For the other
columns, w;=1(;€[l,m], ts[1,n]), if
the validation gate of target t contains

measurement j and ®j;= (), otherwise. Based

on the wvalidation matrix, we must find

], @ that must obey the
following natural constraints:

S, =1

1=0
m

;2),,51 Jor (te[ln]) 2

hypothesis matrix(4

Jor (je[l,m))

Here, a),,=1 only if the measurement j is

associated with clutter ( f=0) or target ¢

( ##0). Generating hypothesis matrices leads
to a combinatorial problem, where the number
of data
exponentially with the number of targets and

association hypothesis increases
measurements,

The ultimate goal of this paper is to find the
hypothesis matrix given the observation y and
x, which must satisfy (2). Let’s associate the
realizations the gate center X, the measurement
y, the validation matrix w, and @- to the

random processes X.Y.Q and . Next,

consider that Q is a parameter space and
X,Y.Q,

posteriori can be derived by the Bayes rule:

is an observation space. Then a

P2,y A P(D)
0RO 3)

We assume the parameter €€ are given and

PR, y,x)=

(X,Y) are observed If the conditional
probabilities  describing  the  relationships
between the parameter space and the
observation spaces are available, one can
obtain the MAP estimator:

0= arg max P( D0, y, x) 4)

As a system model, we also assume that the

conditional  probabilities are all  Gibbs
distributions:

P(QQ,y, 0= exp{ E(QQ,3,%)}65-a
Py, XI.@E ~exp{~E(y,40) b
P(Q)= exp{ E(Q12)} (5-¢)
P(:@E—Zl—sexp{—E(@)} 5-d)
P(2,y,x)= Z, oXp {—E(y,x,2)} (5-e
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where Z(se[1,2,3,4]) is called partition

function:

Zs= fQEE

Here, E denotes the energy
Substituting (5) into (4), (6) becomes

exp{— E(Q)}d® (6)

function.

E(y,x, |0
+ E(QID) 7)
+E(Q)— E(R,y,x%)

E(QQ2,y,%) =

The first term in (7) represents the distance
between measurement and target and must be
minimized using feasible events. The second
term intend to suppress the measurements
valid

which are uncorrelated with the

measurements. The third term denotes
constraints of the validation matrix and it can
be designed to represent the two restrictions.

The energy equations of each term are defined

respectively:
E(y,x|®) = 221,
=l y=l
{ E@|®) = Y2, —w,)
1=l y=l
E@) = 2Q.6,-D+2Qd,-) @
=1 j=I j=t =0

(8) into (7), one gets

. n L ﬂ n m
& = argmax(b[aZZr_,,aA)l, +? z

1=l y=t

where i (x/ v y,d,,) /(d2 +dz and «a

and B are parameters of the weighted
distance measure and

respectively.

the matching term

ITI. Design of Optimal Adaptive
Data Association Scheme

The optimal solution for (9) is hard to find by

any deterministic method. Instead, one can
convert the present constrained optimization
problem to an unconstrained problem by
introducing Lagrange multipliers ad using the
local dual theory[5). The problem is to find
such that where

L((b,l,é‘)=aiirj @, += ZZ(

=1 j=I ll]l

+Z"l:,1,(ila‘)_,, —1)+§_“Tg,(2"(;a3ﬂ -
= = Jj= =

(10)

Here, A and & are just Lagrange multipliers.
Note that (10) includes the effect of the first

column of the associated matrix, which
represents the clutter as well as newly
appearing targets. In general setting, we

assume m>n, since most of the multitarget
problem is characterized by many confusing
measurements that exceed far over the number

of original targets.

Since (10) is a convex function which
guarantes the extrema, using the convex
analysis for the local duality, the optimal

solution can be obtained by

(&, 4 ,¢ )=argm?xm§1xr221(r)1L(w,l,e) an

The necessary condition for achiving extreme

in (10) are

V, L&A = 0

Vv, LA = 0

V, LA = 0 (12)

Using (12), one obtains the final

representations of the solution:
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@ = (po, -ar, (- d)—i— £1/B
A= ~£l+d,,,,, Zf,,(g)

m

; g +,¢1[——Z Blw,-a,)

1=t

(13)

™
I

a(l_é‘l)(’./l _'Tl)}]

which & means optimal value of €& at any

scan.
(13) contains two parameters @ and B. To
these parameters, we consider the

likelihood)

® is estimated as a maximum

obtain

ML (maximum estimation:  Given

(w,y,x),
likelihood estimate such that

G)=argmgxP(w,y,x|a),®) (14)

=[a| A1,

ML is unique if it exists, the ML estimation is

where © Unfortunately, although the

computationally  prohibitive due to the
calculation of the partition function. Therefore,
as an alternative of ML, MPL{(Maximum
Pseudo Likelihood) is considered. In the MPL

Pl@.y.x|@,0) js represented as a

product of local partition function:

estimation,

Pv.x|w,0,0)P(0|w,0)P(w]|0)

Plw,y,x|0.0)= -
(@,y,x] P@|0)
—HH% {(-0'd(@,)}
0 gl
(15)
where Zy is a local partition function:

= Y expl-ar,d,5,-£(d, ~w,)’]
@,6d (16)

and cost function P@,) g

a) 0,
-, a7

It is proven that (16) is strictly concave with

@(a)) l:(w

respect to & if and only if the parameters

that comprise @ are linearly independent with

each other. Therefore, & can be found from

the gradient search method:

o0 .
—=—uV
= UV log P(w,y,x| @,0) (18)

Putting (15) into (18) arrives

0™ =0"-uV, InPw,y.x|d.0)|

[SEN

=0 - uY Y[VG,)- - Y O, )exp(-0° d(é,))]

=0 j=| @, €0

(19)

where p and t are an updating constant and
an iteration index, respectively.

In fig. 2, we show the overall computational
flow structure. Its structure consists of the
data association and parameter
block
transforms the input data into the energy

two parts:
updating. The data association
equation to obtain the feasible matrix. Inside
the block, first
Finally, feasible matrix,

is calculated and then
will be calculated.
The parameter estimation block updates the
parameter using the previous input and
feasible matrix data.

Fig.2. Overall flow diagram of optimal data
association algorithm

According to the overall computational flow
structure, the

computational complexity

analysis is  simplified as numbers of

multiplications in  data association and
parameter updating. Suppose that there are n

targets and m measurements. And assume that

the average iteration number of ¢/ and A s

k. and k,, respectively. In this case, A and

€'s computation in the data association stage

require and . The necessary computation of

the feasible matrix extractions 1s

multiplications.  Therefore the number of

multiplications required in the data association

part is O((k, + ky +1)mn)
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Fig.2. Overall flow diagram of optimal
data association algorithm
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IV. Computer simulation

We present some results of the experiments
comparing the performance of the proposed

MAP estimate adaptive data
association(MAPADA) with that of the
Hopfield Neural PDA(HNPDA) of Sengupta
and Hus[2]). Though the MAPADA has a good
structure for a parallel hardware, currently the
algorithm is simulated by a serial computer.
The dynamic models for the targets have been

digitized using sampling period 7T normalized

to 1s and the state vectors have been
represented in 2-dimensional Cartesian
coordinates. Furthermore, only position
measurements have been assumed to be

available. The surveillance region used in the
simulation is a 20 km by 20 km square and
the initial positions and velocities of 10 targets
in 2-dimensional plane are given in Table 1.
Since every targets except target 8 and 9 are
non maneuvering, the generic target dynamic
model has a linear motion characteristics.

Tablel. Initial positions/velocity of 10 targets
X 1. 10709 239 A9

Target | Position(km) | Velocity(km/s)
[ X y x y
1 -4.0 1.0 02| -0.05
2 -4.0 1.0 0.2 0.05
3 -6.0 -5.0 0.0 0.3
4 -5.5 -5.0 0.0 0.3
5 8.0 -7.0 -0.4 0.0
6 -8.0 -8.0 0.4 0.0
7 -5.0 9.0 0.25 0.0
8 -5.0 8.9 0.25 0.0
9 0.5 -3.0 0.1 0.2
10 9.0 -9.0 0.01 0.2

In Fig.3, we shown the result of 10 target
tracking using the data of table 1. Table 2.
summarizes the rms position and velocity
errors for each targets. The performance of

the MAPADA is superios to that of HNPDA.

Table 2. RVS Erars in the case of 10 targets
¥ 2. RMS 2.4

Position Velocity Track
target error error Maintenance
(km) (kn/s) (%)
i HNPDA [MAPODA| HNPDA {MAPODA| HNPDA |MAPODA
1 064 | 042 | 069 | 018 | 95 100
2 064 | 042 | 042 | 0.17 | 95 100
3 078 { 042 [ 022 | 018 | 100 | 100
4 060 | 043 | 021 | 018 | 93 100
5 059 | 045 | 067 | 018 | & 100
6 057 | 045 | 020 | 018 | 100 | 100
7 057 | 042 | 031 | 049 | 90 100
8 - 2.95 - 1.18 0 53
9 062 | 044 | 027 | 0.21 80 98
10 | 059 | 045 | 021 [ 018 | 100 93

V. Conclusion
In this paper, we have developed the optimal
adaptive data association scheme for radar
multi-target tracking system. This scheme is
determine all

designed to parameters
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automatically and requires multiplications. We
have confirmed that all parameters converge to
steady states in the data association capahility
simulation and tracking accuracy is superior to
that of HNPDA 5.2%
tracking accuracy under the clutter density of
¢=0.4. The superiority of this scheme to the
HNPDA comes from two important points. At
this weighted
distance compared to the averaged weighting
distance of HNPDA. Under the heavy clutter
ambient, target’s direction is more important
than the correct position. The second is that
the new algorithm can reject the irrespective
validation matrix by

about in view of

first, scheme used course

plots from the
incorporating the matching term in the energy
equations.
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