A Study on Estimation on Air Exchange Rate and Source Strength in Indoor Air Using Multiple Measurements of Nitrogen Dioxide

이산화질소 다중측정을 이용한 실내공기의 환기량 밀 발생량 추정에 관한 연구

  • Yang, Won-Ho (Graduate School of Public Health, Seoul National University) ;
  • Lee, Ki-Young (Queensland University of Technology) ;
  • Chung, Moon-Ho (Graduate School of Public Health, Seoul National University) ;
  • Zong, Moon-Shik (Graduate School of Public Health, Seoul National University)
  • Received : 2000.01.20
  • Accepted : 2000.04.24
  • Published : 2000.05.10

Abstract

Daily indoor and outdoor nitrogen dioxide ($NO_2$) concentration for 30 days were measured in 28 houses with questionnaire of housing characteristics in Brisbane, Australia. Using mass balance equation and regression analysis, penetration factors and source strength factors were calculated. The penetration factors of 27 houses except one house were between zero and 1, though penetration factor should be between zero and 1 by means of mass balance equation. Relationship between indoor and outdoor concentrations in each 27 house was calculated using regression analysis. According to the obtained linear regression equation, the slope means penetration factor and the intercept means source strength factor. Calculated mean and standard deviation of coefficients of determination ($R^2$) in electric and gas range houses were $0.70{\pm}0.13$ and $0.57{\pm}0.21$, respectively. The source strength factors were more than zero in 27 houses. Mean and standard deviation of slopes in electric and gas range houses were $0.65{\pm}0.18$ and $0.56{\pm}0.12$, respectively. Mean and standard deviation of intercepts in electric and gas range houses were $1.49{\pm}1.25$ and $5.77{\pm}3.55$, respectively. Air exchange rate and source strength were calculated from penetration factor and source strength factor, respectively. Geometric mean and standard deviation of calculated air exchange rates in 27 houses were $1.1/hr{\pm}1.5$. Presence of gas range was the most significant factor contributing to indoor $NO_2$ level in house characteristics (p=0.003). In gas range houses, source strengths ranged from 4.1 to $33.1cm^3/hr{\cdot}m^3$ with a mean $12.7cm^3/hr{\cdot}m^3$ and a standard deviation 9.8. The source strengths of gas range houses were significantly different from those of electric range houses by t-test (p<0.001)

Keywords