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Variational Approaches to Short Waves in Weakly Viscous Fluids
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A weakly viscous wave and an approximate variational principle in viscous fluids are introduced,
with which we can interpret the fundamentals such as how viscosity dissipation occurs with time
elapse, and how the free surface boundary layer exists at the wavy surface in weakly viscous fluids.
As an application, responses of a spherical buoy on the weakly viscous capillary gravity wave are
investigated to show the viscosity effects. At the end, surfactant problems are briefly reviewed with
the view of short viscous waves as expected future applications.

INTRODUCTION

Variational formulation is now popular and powerful
in various fields where it is applicable. Variational
approaches to wave dynamics have been issued actively
since early sixties by many authors like Whitham
(1974). Since then, many aspects involved in wave
phenomena are still investigated by employing the
methods based on variational calculus, not to mention
specific examples. The discussion here reviews and
describes what the variational principles are regarding
force equilibrium equations, and how the specific vari-
ational principles work in basic wave types such as
gravity waves, capillary-gravity waves, and a weakly
viscous wave derived in the following sections. Equi-
partitioning of kinetic & potential energies in capil-
lary-gravity waves is also briefly discussed by inspect-
ing the role of surface tension in potential energy.
As an approximation of viscous waves, a weakly vis-
cous wave type, equation (27), corresponding to its
variational principle is introduced. With the help of
this new wave, we can understand the fundamentals
such as how viscosity dissipation occurs with time
elapse, how rotational flows work to produce vor-
ticity, and how the free surface boundary layer (FSBL)
exists at wavy surfaces in weakly viscous fluids. The
equi-partitioning between energies also applies in this
weakly viscous wave, as it does in inviscid waves,
in the sense of perturbation.

In the second half, responses of a spherical floating
object on the weakly viscous capillary gravity wave
are investigated as a specific application. The actual
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distributions of the viscous shear forces due to the
free surface boundary layer flows are found across the
intersection of the wave and the buoy at each time
step employing a multiple coordinate system. This
coordinate system consists of two sets of coordinates,
one of which is a Cartesian system fixed in space,
mainly for the representation of the wave, and the
other is a spherical system moving with the spherical
buoy. The simultaneous usage of multiple coordinate
systems turns out an efficient and promising tool
when we deal with multiple objects with different ori-
entations as we did with the present wave-buoy prob-
lem. Wave forces are calculated by integrating the
stresses numerically over the domain of the instant
intersections. At the end, surfactants and its related
problems are reviewed and discussed with the views
of short waves, viscosity, varying surface tension, and
remote sensing of ocean surfaces, each of which
requires small scale, detailed and advanced informa-
tion indispensable for the better understanding of
global oceanic environments of the Earth.

'CAPILLARY-GRAVITY WAVES
Variational principle
The force equilibrium equation (Navier-Stokes Equa-
tion) is

S
Zfi = %‘?]H%/ V_‘9/+‘%VP—VV2-{9/+g7< =0 )]
where V is the fluid velocity vector, P is the fluid
pressure, v is the viscosity of fluid, p is the water

density, and g is the gravity constant. For irrotational
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flows in inviscid fluids, we can employ a scalar func-
tion to represent the velocity as below,

Zf=%—"+?/ VV+pVP+gk 0,& V=vo (2)
where @ is the velocity potential representing irro-
tational flows.

-Virtual works by f; _
A virtual displacement in two dimensional flows is

below by definition,
8% = 8x+ 52k 3)

where (x, z) and (7’, 7<) are the horizontal and vertical
coordinates and their unit basis vectors in Cartesian
coordinates. Then, the whole virtual work by the forces
in the Navier-Stokes equation is defined as

Bys = 37382 @

or, for a control volume, the virtual work becomes

%
WV 2 -3 1 2Y <2
SWy = J‘J(§+V-VV+6VP+gk)-85dzdx
Xz

- jj( ( )+V<p V(V®)+L VP+gkj S3dzdx  (5)
or, with the help of variational calculus, we can get
Wy = SQJ VQ9+ 1V<I> Vo + pP+gz)dzdx} 6)

-Virtual work by o

Surface tension(o) is usually assumed constant in the
flows with free surfaces, then, the virtual displace-
ment for surface tension is defined as

85 = sx; + SZZI at surface (7)
= 8st

where 7 is the unit tangential vector at the surface.
Then, the virtual work (0W;) by the surface tension
becomes
W, = ot st
= 8(0s) ®

Since, at the surface, the arc-length of a wave profile
is determined using the surface elevation as below

s=[J1+2dx 9)
where  is the surface elevation of the wave. Then,
the virtual work due to the surface tension finally
becomes

8W6=6(0_|. 1+g§dxj (10)
Therefore, the total virtual work in the capillary-gravity
wave type is the sum of above two portions.

dWe = SWyg+8Wy (11

Or, the variational principle of the capillary-gravity
wave type, which is nonlinear, becomes

U _[ U (—+ ~Vo- V®+pP+gZ)dZ+5m)dx)dt= 0
(12)

A variational principle and its associated equation set

For capillary-gravity waves in deep sea, the vari-
ational principle becomes equation (13) after trivial
modifications,

], [ (ji(ai’+ lvo.vou pP+gz)dz+§M)dx)dt=o
(13)

Variation with respect to @, and £ leads us to the follow-
ing equation set in equation (14)*. Since d® and A{
are arbitrary, each integrand in the equation (14)
becomes zero, which results in a group of separated
equations having those meanings at the right side.

~ _ Xy Q 4 i ¢
dWeg = -!.fo(at . dDdz + axI—w (I)YXSCDdz)dxdt
: conservation law
‘J L:Ji (D, +P,,)8Pdzdxdt
: governing equation
Xy
* .[.[xf((p,z -8 q’,x?;,x)[z _ gsq)dxdt

: kinematic surface B. C.
o +—1—V<I>-Vd>+§+gz
“ g2 SCdxdt
(G
1+¢ T+ E2
: dynamic surface B.C.

+ ”jf’ @, . 0Pdxdt  : bottom B.C.
¢

*G.B. Whithams, Liner and nonlinear waves, John Wiley,
New York, 1974.
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xp2=4
¢ » "
+ === 3¢ : corner condition
2‘ J1+52 ¢
Xf,Z:
=0 . (14)

The obtained equations, which are nonlinear, constitute
a set of a governing equation with its boundary condi-
tions representing the wave motions at the surfaces.
With additional assumptions of linearization, the equa-
tions reduce to the ordinary linear wave equation set.
- Equi-partitioning of energies in capillary-gravity waves
kinetic energy stored in one wavelength is, after the
assumption of linear wave profile, easily obtained using
its definition as

E, = 2aMpg+ k) (15)

where a is the wave amplitude, A is the wave length,
and k is the wave number.

Potential energy in C-G waves consists of two
works by gravity and by surface tension, therefore,
the potential energy stored in one wavelength
becomes

EP=J‘§J.§pzdzdx-g+_[gc-( [1+C2-1)dx (16)

Just as the two energies balance each other in gravity
waves, kinetic energy in capillary-gravity waves bal-
ances with the works by the two forces, the gravity
and the surface tension, or E,=E,.

A WEAKLY VISCOUS WAVE
(AN APPROXIMATION OF
REAL WATER WAVES)

An approximate variational principle in weakly vis-
cous fluids

If we employ an assumption on the velocity as
below,

S 2 N =
V=VO+Vx¥=Vx¥+Vx¥ a7

N =
where ¥, and ¥ are stream functions for irrotational
and rotational flows respectively in two dimensional
(x, z) directions. Then, the weak viscosity guarantees
that the irrotational portion turns out much greater than
the rotational portion, which we can confirm later in
equation (27), in other words,

Vo = ‘Vx? w@‘ (18)

»

Virtual works in weakly viscous fluids are defined

by the forces in the Navier-Stokes equations and the
corresponding virtual displacement as follows.

8W=2fi-83, (19)
a9 > 2> 1 > 2
where, Zf, = a—‘t/+ V-VV+ BVP_VVZV+gk .

Then, the virtual work for a control volume can be
expressed as

é
>
SWys = [ @—‘;+ V- V?/+F1)VP—VV2?/+ gk)~5§dzdx
Xz .
3 = > 2
- H(a—t(Vd)+V><‘P)+(VdJ+V><‘P)-V(V(I)+V><‘I’)
Xz

4
+ éVP—vVZ(Vd) +Vx ‘{’) + ga - 88dzdx (20)

After a series of variational manipulations, we can
approximate the above virtual work as

1 L2 L2
§Wiyg = 5@](@; (E(Qx—w,z) +(@,+¥.0) )
z
]—%}‘i’,t(‘l‘+‘i‘)+%P+gz)dzde, @2n
since,

S AY+P)) = 3P (P +P)+ P 3(¥+P) =P S(¥+P)

' (22)
The virtual work by the surface tension is assumed
same as that in ordinary capillary gravity waves. There-
fore, the variational principle for this weakly viscous
wave type, which is genuinely nonlinear, can be
approximated as below in equation (23) by employ-
ing the fact that rotational portion is smaller than others
by one order with respect to the small viscosity v.

1 =2 =
¢ [ Dot 5{(V(I> +V X‘I’)(VCD+VX‘I")}

alfl)

dz

_%‘P,t(‘P+‘P)+P+gZ dxdt | =0

+§(1 +(2)172
(23)

A free surface wave in weakly viscous fluids

With the same assumption on velocity in the pre-
vious section,

> = - = .
V=V0+Vx¥ = Vx¥+Vx¥ with

»

V@] = |V><‘?’ Vx‘-I%l
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and adding the assumption of linearization, we can
get a governing equation set from the Navier-Stokes
equation,

V20 =0, V2¥= ;‘i{t (24)

and viscous boundary conditions as below.*
at surface

(=w, & (I>’t+g§=(—§) £>0 (25)

T =W, +w, )=0, 1, =2uw -p-ol =0

at bottom
w=0 (26)

where u, w are horizontal and vertical fluid velocities
respectively, and 1., T, are tangential and normal
stresses on the free surface. If we solve the above
equation set with proper approximations in the solu-
tion procedures by ignoring terms smaller than O(V),
we can get the below weakly viscous wave as an
approximation of real water waves.

= ge“z"]czt(ei(kx_wot)+C.C.)

4

p il kx— @nt—
= g(%)ekze‘z"kzt[el( i 2)+ C.C.J, Y =_id

R, { . R B n
Sy =i(m—")ek 72e4"kz{el( kA/:Hkx m0t+2)+c.c. o)
R\ %

| ® (27abc)
‘where, R,=—»1

: vk

For large Reynolds numbers, it is possible to describe
the wave motions in weakly viscous fluids as shown
in equation (27), and also simplify the dispersion equa-
tion which shows how the viscosity works separately as
well as the frequency-wavelength relation in the deri-
vation. The solution (27) states that every physical term
undergoes dissipation due to the viscosity as time goes,
and that the rate of dissipation relates with viscosity and
wavenumber as much as exp(-2vk’). Wave profiles are
same as those of inviscid waves except the dissi-
pation. They oscillate and propagate in the same fash-
ion as a ordinary capillary-gravity wave does. There
exists a rotational flow expressed in the stream-func-
tion which says, as an approximation, that it will
oscillate in both directions horizontally as slow as
irrotational flows and vertically as fast as square root

of Reynolds number, and that the amplitude or the
amount is so small as the order of the reciprocal of
Reynolds number or O(v), and that it will die out as
it deepens as fast as exp(k/R,/2-z), while others
decrease as fast as exp(kz). In other words, there
exists a thin layer beneath the surface, where both
irrotational flows and smaller rotational flows work,
and outside of which flows become inviscid, and the
thickness of which relates with wavenumber and Rey-
nolds number in real waters as weakly viscous fluid.

Vorticity intensity and free surface boundary layer
thickness

It is well known that there exists vorticity even in
inviscid flows near free surfaces in order to satisfy
the free surface boundary conditions. The vorticity
existing in this wave type is as follows.

Vorticity intensity:

2Q = VxV
= 0(2kawy) + O(v2k3a) (28)

where V= V<I)+V><$ as described in the equations
(17) and (27bc).
Equation (28) says that in the weakly viscous flows
with free surfaces, there exist two vorticity com-
ponents, one of which is free from viscosity and the
other is directly due to viscosity. The viscosity free
vorticity which is also mentioned Longuet-Higgins
[1992]*, becomes much bigger than the other portion
under the assumption of weak viscosity contrary to
the ordinary expectation. The vorticity also dissipates
as fast as exp(-2vk?) as time passes, and exists only
within where the rotational stream function exists.
The vorticity intensity at z =-§, reduces to 36% of
that at surface where 6, = (2v/®,)"?, and becomes 1.8%
at z =—49,, which means that outside 49,, irrotational
motion dominates the fluid flows. It can be said that
boundary layer thickness is order of (2v/im,)"?, which
coincides with the already known result before.
Energies dissipate as time passes in viscous fluids.
In the case of above weakly viscous waves, the
energy stored in a wavelength undergoes dissipation
as fast as exp(-4vk’f) as shown in equation (29) since
energy is proportional to the square of wave-height
which dissipate at the rate of exp(-2vk*). The energy
in rotational flow portion is as small as O(R;*?) that
becomes trivial in the present perturbation scale of

*J.W. Miles, Capillary-viscous forcing of surface waves, J.
Fluid Mech. Vol. 219 1990.

*M.S. Longuet-Higgins, “Capillary rollers and bores”, J.
Fluid. Mech. Vol. 240, 1992.
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O(R;M).
E = lazk(p g+0k?) - ek (29a)
P~ 4
2
E, = ipa%%(l + 2(%)1/2 + 2(%)1/2) ekt (29b)

b
3
where o = ay+vay +0(v?), o2 = %+gk, oy = —2k.

This weakly viscous wave is derived using pertur-
bation technique with respect to the small number v,
in which sense the equi-partitioning between poten-
tial energy and kinetic energy also applies here as
it does in inviscid waves.

APPLICATIONS

A spherical buoy on a weakly viscous capillary
gravity wave

2 - axis

X - axis

B(x.y.z)= B(r8,0)

Fig. 1. A sperical buoy on a weakly viscous wave.

Z' - axis

= rcosgcosf
oP .
4 y = rcosgsiné

z'=z-z,=rsing

Fig. 2. Relationships between coordinate systems.

Coordinate systems involved

To describe the present problem effectively, two
types of coordinate systems are used, one of which
is a Cartesian system (x, y, z) fixed in space and the
other is a spherical system (, ¢, 6) that is fixed at
the buoy geometric center, i.e. moving with it.

Both coordinate systems are used simultaneously dur-
ing the detailed calculations through numerical com-
putations. The relationships between these two systems
are as above. Thez’ is an intermediate variable mean-
ing the vertical displacement of the buoy center from
the horizontal x axis of the fixed coordinate system.

The instant intersection between the spherical buoy
and the wave in motion

The waves can be described efficiently with respect
to the fixed Cartesian coordinates (x, y, z) where y
- axis is a dummy direction, and the geometry of
the spherical buoy can be described in the both coor-
dinate systems, however; when we consider the wave
forces acting on the moving sphere, the spherical
coordinates fixed at the buoy geometric center works
better for the purpose, because we need normal and
shear stresses acting on the three dimensional instant
intersection between the buoy and the wave.

Z(x,z,t) = ge‘z"kzt(ei(kx_wot)+c.c.) (30)
B(x,y,2,1) = 2= (x2+ Y2+ (z—-7,(1))?) = 0 (31
20 = x2+y? 2
cosZ@ RSN (32)
tan® = ¥ 33)

x

where

—r<x<r, —r<y<r, —r+z,2z5r+z,, and
z, = the location of the buoy center at t=1;

Using the above four equations, we can determine
the coordinates representing the intersection numer-
ically with respect to the both coordinate systems as
the wave passes by the spherical buoy.

Equilibrium equations

Because the velocities are expressed in the Car-
tesian coordinates, and the stresses acting on the buoy
surface are easier to be manipulated in the moving
spherical coordinates, we rotate the stresses T; which
are now principal with respect to (x, y, z) coordinates
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to become T, in such a way that T, are the principal
stresses with respect to &,-axis, &,-axis, and ég-axis,
where 2,, ¢, and ¢, are unit vector bases in the spheri-
cal coordinates at time ¢ =, Then, we integrate the
stresses T over the domain of the intersection at the
instant.

Then, the wave loads are

W= [1,dA
A
= [aya,1,d4 = [t da’ (34)
A A

where, 1, = aya;T;
Ty = W+ ) u;=velosity in i-axis direction
ay, ay=direction cosines between (2, 2¢, )
> > 2
and (i, j, k)
We can calculate now the normal and shear forces
due to the weakly viscous wave by integrating the

stresses defined above and add the pressure (p) over
the intersection as below. The normal force is

w, ;= -[e _[(P (p+7,,)rcos@dordo (35)

¥4 . !
= Jz J¢n p+ ariarju(ui’j +u; ))rcos@rd6
2

where, p = p(¢’t+%uiu-). : . | (36)

There are two components of shear forces acting on
the buoy corresponding to the two stress components
in the 2, and 2, directions on the sphere. The two
shear forces are

Wep= je '[(p‘crerCOS(pd(prde

2
= J.onj‘(pn ariaeju(ui,j +u; JrcosQrdd (37)
2

Weos = je .[(p‘cr(prcos(pd(prde

= Jgn'[¢naria¢ju(ui’j+uj, Jreos@rdo (38)

2
According to the Newton’ second law, the motion of
the buoy on the weakly viscous waves can be described
as a equilibrium status among all the forces and
moments acting on it. The equilibrium status can be
expressed as coupled equations sharing wave loads.

d“z,
3= MR W, = 0 (39)

S Mo,= Iip + (dex Mg~ B~ (Wyo + Wodg)x72,) j =0 (40)
i

where, M is the buoy mass, z, is' the vertical location
of buoy canter, Ry is the restoring force, Wy is the
vertical component of the wave forces, [ is the buoy
moment of inertia, ?ic is the location vector connecting
from mass center to geometric center of the buoy,
A_4>g is the buoy weight, B is the moment vector by
the buoyancy, Wy, W are the shear wave forces, and
r is the radius of the spherical buoy. The vertical com-
ponent in the wave forces is calculated as the inner
product of the wave forces expressed in the spherical
moving coordinates and the vertical unit vector in
the fixed Cartesian coordinates.

W= (W, *,+W9f29+wwz(p)-7c 41

The velocity potential and the stream function repre-
senting vortical flows are shown in equations (27bc).
If the mass center (C,) is eccentric to geometric cen-
ter (C,) of the spherical buoy and the C, is located
below the C,, then there occurs a restoring moment
due to gravity against the exciting moment by shear
forces, which causes a oscillating rotational response
of the buoy. The coupled equations (39) and (40) are
solved numerically. At each time step, the coeffi-
cients in the equations are determined corresponding
to the instant intersection, and solved through numer-
ical computations. When the C,, is above the C,, the
buoy becomes unstable regarding the rotational
response.

Numerical results

Those forces and moments in the above equations
are determined at each time step by integrating stresses
acting on the instant intersection between the wave
and the spherical buoy. The moments in the equation
(40) are calculated on the instant vertical position of
the buoy at each time step determined by the equation
(39). The wave loads causing the buoy responses as
exciting force are such that a wave of N wave length
long passes by the buoy, which means that the excit-
ing force only exists while the wave intersects with
the buoy, and then disappears after it passes away.
Water density is set 1. (gr/em?®), the viscosity is 0.02
(cm®sec), and the gravity constant is 980. (cm/sec.?).
The wavelength and the frequency are 2. (cm) and
73.3 (rad/sec.) respectively. The buoy radius is
4*wavelenght/n, and the buoy material density is set
half of the water density. Time step size (dt) is set
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Table 1. Dispacements of a spherical buoy and the loads from a weakly viscous wave.

Time (sec) Vertical Displ. (cm)  Roll angle (Deg.)  Normal force (dyne) Shear force | (") Shear force {1 (") Shear moment | {(dyne*cm) Shear moment Il (")

0.0000 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.0054 -1.44406E-06 6.69068E-08 1.42745E+01 5.09852E-02 1.85734E-01 -1.90407€-03 4.67317E-01
0.0108 -4.61265€-05  4.T776NE-07 3.81910E+01 9.79153E-02 2.88068E-01 -7.02700E-03 7.13249E-01
0.0162 -2.35436E-04 1.50720E-06 6.41967E+01 1.36786E-01 4.43697E-01 -1.42262E-02 1.08492E+00
0.0215 -6.88570E-04 3.54975E-06 9.6127T1E+01 1.38762E-01 6.30633E-01 -2.02237E-02 1.52504E+00
0.0269 ~1.53191E-03 6.98383E-06 1.23726E+02 1.29068E-01 7.26903E-01 -2.36462E-02 1.72602E+00
0.0323 -2.87961E-03 1.20325E-05 1.49029E+02 8.39897E-02 7.24667E-01 +2.20992E-02 1.67808E+00
0.0377 -4.81093E-03 1.86667E-05 1.51938E+02 1.99252E-02 7.12406E-01 -1.58185E-02 1.60949E+00
0.0431 ~7.35010E-03 2.67081E-05 1.40821E+02 -5.52116E-02 5.22816E-01 -6.28400E-03 1.09784E+00
0.0485 -1.04329E-02 3.57820E-05 1.09836E+02 -1.25431E-01 3.77310E-01 4.95549E-03 7.13162E-01
0.0539 -1.39118E-02 4.55046E-05 7.28477E+01 -1.83551E-01 1.06483E-01 1.52697E-02 2.52526E-02
0.0592 -1.76000E-02 5.65431E-05 3.64693E+01 -2.20674E-01 -2.99202E-02 2.53994E-02 -3.03436E-01
0.0846 -2.13016E-02 6.56332E-05 -3.36750E+00 ~2.52539E-01 -2.64117&-01 3.20817€-02 -8.76391E-01
0.0700 ~2.48144E-02 7.54236E-05 -3.67387E+01 -2.46953E-01 -4.83810E-01 3.70328E-02 -1.39231E+00
.0.0754 -2.79495E-02 8.44649E-05 -5.93437E+01 -2.28274E-01 -6.12775E-01 4.20877E-02 -1.66627E+00
0.0808 -3.06618E-02 9.24556E-05 -7.36197E+01 -1.71321E-01 -6.20599E-01 4.35092E-02 -1.63190E+00
0.0862 -3.25578€E-02 9.92564E-05 -6.65745E+01 -9.91167E-02 -5.01653E-01 4.36846E-02 -1.27942E+00
0.0916 -3.39084E-02 1.04875E-04 -4.83310E+01 -4.51555E-02 -3.84469E-01 4.10548E-02 -9.44429E-01
0.0969 -3.46632E-02 1.09398E-04 -3.54955E+01 -3.82692€-02 -3.08279€E-01 3.82282€-02 -7.19717E-01
0.1023 -3.48789E-02 1.13015E-04 -2.73165E+01 -3.99247E-02 -2.62751E-01 3.66825E-02 -5.77219€-01
0.1077 -3.45895E-02 1.15839E-04 -2.17416E+01 -4.03659E-02 -2.31788E-01 3.54201E-02 -4.76469E-01
01131 -3.38220E-02 1.17948E-04 -1.74487E+01 -3.66276E-02 -2.14742E-01 3.49928E-02 -4.04113E-01
0.1185 -3.26016E-02 1.19397E-04 -1.41033E+01 -4 31835E-02 -1.90358E-01 3.44804E-02 -3.27787E-01
0.1239 -3.09547€-02 1.20235E-04 -1.13670E+01 -4.33901E-02 -1.80036E-01 3.42069E-02 -2.73003E-01
0.1293 -2.89097E-02 1.20504E-04 -9.08646E+00 -4 50805E-02 -1.65819E-01 3.40611E-02 ~2.22375E-01
0.1346 -2.64976E-02 1.20241E-04 -7.07654E+00 -4.30764E-02 -1.57794E-01 3.30991E-02 -1.757326-01
0.1400 -2.37522E-02 1.19480E-04 -5.23222E+00 -4,64766E-02 -1.46411E-01 3.25321E-02 -1.33439E-01
0.1454 -2.07101E-02 1.18254E-04 -3.72693E+00 -3.29916E-02 -1.43826E-01 3.05932E-02 -9.73059E-02
0.1508 -1.74104E-02 1.16590E-04 «2.20262E+00 -4.06837E-02 -1.37673E-01 3.00974E-02 -6.24129E-02
0.1562 -1.38952E-02 1.14520E-04 -8.86731E-01 -4.02025E-02 -1.33004E-01 2.89205E-02 -2.80653E-02
.0.1616 -1.02081E-02 1.12069E-04 6.72988E-01 -3.23511E-02 -1.31183E-01 2.55203E-02 6.12383E-03
0.1670 -6.39514E-03 1.09266E-04 1.97779E+00 -4.09355E-02 ~1.30797E-01 2.45549€E-02 3.61671E-02
0.1723 -2.50390E-03 1.06137E-04 3.43455E+00 -3.72892E-02 -1.29199€-01 2.16379E-02 6.87508E-02
04777 1.41707E-03 1.02710E-04 4.85796E+00 -3.08794E-02 -1.34876E-01 1.82597E-02 1.03849E-01
0.1831 - 5.31868E-03 9.90130E-05 6.64701E+00 -3.40419E-02 -1.39916E-01 1.52307&-02 1.40124E-01
0.1885 9.15097E-03 9.50763E-05 8.37009E+00 -3.07831E-02 -1.45842E-01 1.13288E-02 1.79634E-01
0.1939 1.28639E-02 9.08312E-05 1.05435E+01 -3.12635E-02 -1.56346E-01 7.84866E-03 2.21834E-01
0.1993 1.64079E-02 8.66113E-05 1.29058E+01 -2.71048E-02 -1.63342E-01 3.27026E-03 2.68568E-01
0.2047 1.97336E-02 8.215196-05 1.58946E+01 -3.37583E-02 -1.80429E-01 -1.08199E-03 3.26873E-01
0.2100 2.27917E-02 7.75939E-05 1.98392E+01 -2.48994E-02 -1.93523E-01 -6.69819E-03 3.89184E-01
0.2154 2.55332E-02 7.29794E-05 2.50653E+01 -2.15965E-02 -2.17910E-01 -1.31664E-02 4.69895E-01
0.2208 2.79075€E-02 6.83594E-05 3.25367E+01 -2.24465E-02 -2.49396E-01 -1.95831E-02 6.78081E-01
0.2262 2.98609E-02 6.37925E-05 4.46269E+01 -7.66074E-03 -3.02297E-01 -2.87654E-02 7.38313E-11
0.2316 3.13292E-02 5.93629E-05 6.41882E+01 4.13772E-02 -4.068969E-01 -3.78248E-02 1.03907E+00
0.2370 3.22227€-02 5.51948E-05 6.61720E+01 1.13768E-01 -5.09403E-01 -4.55063E-02 1.34015E+00
0.2424 3.24819E-02 5.13183E-05 4.91949E+01 1.63070E-01 -5.46403E-01 -4.76835E-02 1.48124E+00
0.2477 3.21304E-02 4.77623E-05 2.54154E+01 1.98644E-01 -4.66553E-01 -4.47769E-02 1.32919E+00
0.2531 3.12499E-02 4.44728E-05 -6.18016E+00 2.12742E-01 -2.95951E-01 -3.81080E-02 9.35575E-01
0.2685 2.99644E-02 4.1307T1E-05 -4.12947E+01 1.88799E-01 -7.74356E-02 -2.65531E-02 4.05521E-01
0.2639 2.84312E-02 3.80265E-05 -7.20141E+01 1.54601E-01 6.34920E-02 -1.50762E-02 6.21744E-02
0.2693 2.68042E-02 3.45556E-05 -1.02604E+02 1.06015E-01 3.01305E-01 -4.82034E-03 -5.41606E-01
0.2747 2.52409E-02 3.07653E-05 -1.28618E+02 . 4.43302E-02 4.90592E-01 3.24179E-03 -1.03974E+00
0.2801 2.38833E-02 2.64801E-05 -1.43422E+02 -2.05533E-02 6.67942E-01 8.25260E-03 -1.51863E+00
0.2854 2.28388E-02 2.14933E-05 ~1.39100E+02 -8.05292€-02 6.80605E-01 1.10253E-02 -1.58907E+00
0.2908 2.21421E-02 1.55669E-05 -1.26221E+02 -1.24997E-01 6.10770E-01 1.15961E-02 -1.44897E+00
0.2062 2.17668E-02 8.69400E-08 -1.02468E+02 -1.39883E-01 5.20956€-01 1.03218E-02 -1.27875E+00
0.3016 2.16368E-02 9.88722£-07 -7.47302E+01 -1.30191E-01 4.14232E-01 8.06185E-03 -1.01223E+00
0.3070 2.16355E-02 -7.43535E-06 -3.93795E+01 -1.011926-01 2.98633E-01 4.99669E-03 -7.40663E-01
0.3124 2.16275E-02 -1.64386E-05 -1.50369E+01 -5.43225E-02 1.67346E-01 1.77334E-03 -4.21987E-01
03177 2.14936E-02 -2.57531E-05 -7.35486E-02 -3.37921E-03 -9.15527E-03 1.56241E-05 2.32443E-02
0.3231 2.11456E-02 -3.50683E-05

0.3285 2.05628E-02 -4.42924E-05

0.3339 1.97505E-02 -5.3401SE-05

0.3393 1.87169€-02 -6.23700E-05

0.3447 1.74725E-02 -7.41727E-05

0.3501 1.60304E-02 ~7.97850E-05

0.3554 1.44057E-02 -8.81826€E-05

0.3608 1.26158E-02 -9.63418E-05

0.3662 1.06799E-02 -1.04240E-04
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1/50 of the wave period, N is set 1, and the distance
between C,, and C,is set 1/10 of the buoy radius.
The shear forces and moments are displayed in Table
1 as well as the vertical displacement and rotation
angle. In the figures 3, 4 and 5, we can see how
the shear forces and the moments change as time
passes. As we find in the table 1, rotational response
is quite apparent though with the small moments due
to the small shear forces coming mainly from the
free surface boundary layer. The shear force I and
II in the table and the figures mean the forces acting
in the 24 direction and the ¢, direction respectively,
and the two moments are their corresponding
moments about the y - axis, otherwise, do not exist
in inviscid flows. The translational and rotational dis-
placements continue to exist for the time being after
the wave passes away meaning that the wave loads
disappear, and are supposed to die out eventually due
to the dissipation mechanism. In Fig. 6 through Fig.
8, an instant intersection and its corresponding force

o4
®

o
Y

038 035 04
Time (sec.)

Shear forces (dyne)
) =)
o o

081
Fig. 3. Shear forces I, II from the viscous wave.
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Fig. 4. Moment due to shear force II acting in latitudinal
direction.
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Fig. 5. Moment due to shear force I acting in latitudinal
direction.

distributions on the buoy surface are displayed when
time t=0.1508 sec. Fig. 6 shows the ¢ coordinates
of the wave profile, or how the wave deforms at the
instant. The wave profile continues to deform while
it passes by the spherical object. The vertical height
from the horizontal axis in the Fig. 6 means the ver-
tical displacement of the buoy center at the instant
where the origin of the spherical coordinate system
is located. Fig. 7 shows the distribution of normal wave
force passing as the wave does, and Fig. § displays
how the shear wave forces work on the buoy surface.

This specific example shows the importance and the
role of weakly viscous capillary gravity waves in real
water wave problems, and, in addition, the efficiency
of multiple coordinate systems corresponding to the
orientation of each object. In many cases, for practical
and theoretical reasons, the present approach that
employs different coordinate systems according to dif-
ferent orientations, may guarantee a promising tool
with efficiency and required accuracy.
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Fig. 6. ¢ coordinate of instant intersection: the wave profile
on the buoy surface at t=0.150796 sec.
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Fig. 7. Normal force distribution on the buoy surface at
t=0.150796 sec.
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Fig. 8. Shear forces distributions on the buoy surface at
t=0.150796 sec.
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In this particular problem, the secondary flows due
to the existence of the floating object are considered
small and ignored as a presumed or well prepared
condition.

Viscous waves, surfactants and remote sensing

Ocean surface that covers about two thirds of the
Earth, is a boundary region where various oceanic and
atmospheric activities occur, which are essential to
the Earth’s global environment, and their importance
are getting bigger as our knowledge or modern tech-
nology enhances. Surfactants are the substances which
act on the surfaces of bulk fluids. There are so many
kinds of surface-active materials, natural or artificial,
which cause changes locally and globally in the sys-
tems of bulk fluids with surfactants on them. Polluted
ocean is a typical example as a by-product of modern
industries. Therefore, the understanding of the phys-
ics involved in surfactant phenomena becomes a big
issue throughout various areas and experts including
oceanographers (Journal of Geophysical Research spe-
cial section, 1992).

Wind waves at seas undergo deformations in the
presence of surfactants at their surfaces. It has been
asserted that the whole procedure of developing wind
waves may be modified due to the changes in the
boundary conditions. The damping effect on surface
waves due to the existence of surfactants has been
explained by modifying the tangential boundary con-
dition regarding viscosity effects and the surface ten-
sion. It is usually admitted that surface tension
decreases drastically by the presence of surface-
active materials (Cini et al. 1987).

Marangoni effect

V. Levich introduced the basics of surfactant effects
- on short viscous water waves in his book (1962).
Since then, his approaches and the dispersion relation
equation are still in use without big modifications,
and many papers have been published by physico-
chemists in early years and by the people of geo-
physics in recent days in accordance with the various
trend of modern views.

In late sixties, it was found that, at the surface of
a fluid with surfactants, there exists another wave
mode in the surface films which is quite different from
ordinary water waves though it was hard to be found
because it is usually very dissipative and damped out
quickly. This newly found wave, which turns out oscil-

lating longitudinally, is considered to be excited by
the short viscous waves of bulk fluids vibrating trans-
versely. Since then, the damping effect or the calming
effect by surfactants has been understood effectively
by the resonance-like interaction phenomenon between
the two modes, the longitudinal Marangoni wave
and the short viscous Laplace wave. This Marangoni
effect depends much on the surfactant dilational
properties or the viscosity while the Laplace wave
mode relies more on bulk fluid properties (Cini et
al. 1987 and Lucassen 1982).

On the surface of inviscid fluids, the tangential
stress vanishes and normal component balances with
the pressure due to the surface curvature by means
of Laplace law and uniform surface tension. When
surfactants exist, the surface tension is no longer con-
stant and the tangential stress does not vanish either
because of the active role of viscosity in the inter-
action mechanism between the bulk fluids and the

surfactants. The periodic contraction and extension of

surface, or the periodic horizontal particle velocity
change results in periodic deviation of the surface
coverage of the surface film from its equilibrium
value through a viscous mechanism, which gives rise
to a finite tangential stress change varying from point
to point at the surface. This viscous mechanism causes
changes of surface boundary conditions, more precisely
interfacial conditions between surfactants and bulk
fluids, induces the periodical longitudinal deformation
of surface films , and results in the Marangoni effect
through the interaction between those two wave
modes as mentioned in the previous paragraph. The
Marangoni damping becomes bigger as its wavelength
approaches to that of the transverse wave component
as resonant phenomenon does, at which the longi-
tudinal motion induces a drastic deviation from the
circular orbit motion. Thus there occurs a big change
in the fluid motion such as velocity patterns, from
irrotational to rotational just beneath the surface film,
and vorticity intensity in FSBL flows becomes another
active factor that must be taken into account. There-
fore, this combined effects cause a big energy dissi-
pation under surface films, which results in calming
the fluid surfaces.

In recent years, it was found that the effects by
surfactants on ocean surfaces reach more broadly than
that of past theories that are directly based on the
viscous interaction mechanism mentioned above. In
the eighties, a new look on surfactant effects has been
issued by H. Hiinerfuss and others. It was published
by J. Lucassen that the potential increase in damping
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is larger in longer waves than the expected amount
predicted by the past theory with a proper choice of
surface active materials. In other words, not only
short ripples but longer capillary-gravity waves wetre
found to be damped out by oil films. The wave atten-
vation by surface films is attributed to the Marangoni
effect that causes a strong resonant-like wave damp-
ing in the short wave region, or weakly viscous capil-
lary gravity region. And it is now believed that by
means of nonlinear wave-wave interaction phenom-
enon, wave energy is transferred from longer waves
to the energy sink in Marangoni effect wave region,
which leads to extra effects on longer waves or the
whole wave spectrum (Hiinerfuss and Alpers 1989
and Lucassen 1982).

Short waves are also important in remote sensing
of sea surfaces. The normalized radar cross section
is proportional to the spectral energy density of the
wave spectrum according to the Bragg scattering theo-
ry. The damped ocean surface can be represented by
the relative ratio of the normalized radar cross section
between a slick covered surface and a clean surface.
The damping coefficient as a function of the wave-
length can be obtained by measuring radar back-scat-
ter through varying radar wavelengths and incident
angles. The surface roughness at short gravity waves
associated with sea slicks has been observed using
different measuring methods (JGR special section
1992 and Wismann et al. 1993). The observation has
shown that radar cross-section decrease and relatively
dark images are directly due to the damping of short
waves, actually weakly viscous capillary-gravity waves,
associated with the concentration of surface micro-
layer material. Microlayer damping on short waves is
caused mainly by the elastic or visco-elastic nature
of the thin surfactant layer. The emissivity changes
by the presence of surface layers have been also mea-
sured.

To observe the damping effect on ocean waves with
wavelength of a few meters by monomolecular sea
slicks, an experiment was performed by H. Hiinerfuss
et al. in (1989). According to the test results, the
damping anticipated by the viscosity effect using past
theories was too small and slow to explain the strong
and rapid damping of those relatively long waves.
Based on their measured data, H.Hiinerfuss et al.
again mentioned about the unexpected damping in
this long wave region confirming that it is due to
the combined effects of Marangoni damping on short
waves and the nonlinear energy transfer through
wave frequencies of different wavelengths in the

spectrum.
DISCUSSION

Ocean wave is a typical phenomenon occurring at
the upper oceans with various physical factors involved
in it such as gravity, water viscosity, surface tension
or the interfacial tension between air and sea, the
duration of wind blowing, wind direction, wind fetch
length, and etc.. Usually, the above factors play more
significant roles of their own when the wavelength
is short, otherwise some of them become useless, or
small enough to be ignored. Most of detailed mecha-
nisms in ocean waves generated by wind start or occur
in short waves. For specific and important examples,
wind wave generation itself starts due to the inter-
action between wind and tiny ripples, Marangoni
effect mentioned in the last section works on short
waves, and electro-magnetic waves used in remote
sensing technology interacts far stronger with short
capillary or capillary-gravity waves than long waves.
Therefore, it becomes more important now than the
past to understand the whole and complete nature of
short waves. In the past, many of the water wave
theories are about inviscid waves, and those theories
are advanced enough for their purposes. On the other
hand, problems related with viscous waves are com-
paratively in vague situation. Most of viscous wave
problems are investigated by relying upon modi-
fication of inviscid results rather than direct ap-
proaches to them. Wave breaking also requires better
and detailed knowledge in tiny scale hydrodynamics
such as the local surface tension changes at deformed
wave crests and viscous, rotational or turbulent flows
near surfaces (Longuet-Higgins 1992).

In the present paper, a weakly viscous capillary-
gravity wave is introduced as an approximation of
short real water waves, not a modification of inviscid
waves but an approximate solution of a viscous wave
equation obtained from the Navier-Stokes equation.
Marangoni effect interprets the surfactant damping
on waves relying basically on the dispersion equation
without any concrete wave forms. All we know about
the Marangoni dispersion equation is that it has two
roots that represent two wave modes. Therefore, an
explicit form of a viscous wave such as WVCG wave
introduced in this paper will be handy and needed
for direct and clearer investigations into recent vis-
cous wave problems. The detailed trace of spherical
buoy motions on a short real wave in the previous
section is a direct and concrete application of short
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wave theory (Kim and Debnath 1999). Without the
WVCG wave, it would not be easy to answer or find
out how much the vortical in FSBL work on the buoy
motion, which is now simple enough. Polluted ocean
environment is another typical example asking vari-
ous knowledge including oceanographers’.
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