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The scaling behavior of random fractals and multifractals is investigated numerically on the seabottom
depth in the seabottom topography. In the self-affine structure the critical length for the crossover can
be found from the value of standard deviations for the seabottom depth. The generalized dimension
and the spectrum in the multifractal structure are discussed numerically, as it is assumed that the
seabottom depth is located on a two-dimensional square lattice. For this case, the fractal dimension
D, is respectively calculated as 1.312476, 1.366726, and 1.372243 in our three regions, and our result

is compared with other numerical calculations.

INTRODUCTION

Recently, the investigation for the scaling behavior
of fractal models has attracted a great deal of interest,
since the fractals have been introduced and developed
extensively by the pioneering work of Mandelbrot
(1983). In general, as is well known, two kinds of
the fractals can be distinguished : the deterministic
fractals and the random fractals or self-affine fractals.
The former has the self-similar structure and the scal-
ing invariance under the scaling transformation in
diverse models such as Koch curve and Cantor sets.
The latter constitutes the random complicated struc-
ture that has been applied to a broader range of prob-
lems such as Eden model, the ballistic deposition
model (Family et al., 1985; Freche et al., 1985), the
mountain heights, the phenomena of cloud drift, and
the seashore curve (Vicsek ef al., 1988). Among other
examples of many fractal models we also can men-
tion the self-avoiding random walk, the percolation
clusters, the diffusion-limited aggregation, the random
resistor network, the polymer bonds, the turbulence,
the chaotic motions (Vicsek er al., 1988; Halsey et
al.; 1986; Paladin and Vulpiani, 1987; Lee, 1988; Tel,
1988; Farmer, 1982; Benzi er al., 1984), etc.

Furthermore, in the multifractal structure Paladi and
Vulpiani (1987) have recently discussed the multi-
fractal concept that the singularities of scaling expo-
nents are essentially related to the random probability.
The multifractal structure due to the box-counting
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method is simply represented by the generalized
dimension and the spectrum. Especially, as the multi-
fractals are obtained from the finite value of the ran-
dom probability distribution divided by the square
area on a two-dimensional square lattice, the gen-
eralized dimension and the scaling exponents can be
calculated from the moments of the probability hav-
ing the value of singularities. The generalized di-
mension and the scaling exponents calculated from
the scaling behavior of multifractals have widely
been developed to apply to the fractal phenomena and
the chaotic motions (Halsey et al., 1986; Tel, 1988).
Recently, Matsushita and Ouchi (1989) have shown
that the self-affinity in Japanese mountain topography
is mainly obtained by the numerical method, from
which they have discussed the relation between the
self-affine exponent and the fractal dimension for the
standard deviation of the mountain height. More
recently, the numerical values for the generalized
dimension and the scaling exponent of the multi-
fractals have been extended to Korean mountain
height (Kim and Kong, 1998).

The main purpose of this paper is to investigate
numerically on the scaling behavior of both random
fractals and multifractals in the seabottom depth on
the seabottom topography shown between 129°21"—
129°54°E and 34°52°—35°19°N, where this region is
located near to the east of Pusan. The motive that this
region is primarily selected is induced to have more
data of seabottom depth than any other region around
Korean peninsula. For this case, we shall treat for
clearity with self-affine exponents on the fractal
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structure of the seabottom topography, and with the
critical length occurred in the crossover from self-
affine exponents for standard deviations of the
seabottom depth. From the data for seabottom depths,
we present an efficient and convenient method relevant
to investigate numerically on the scaling behavior of
the generalized dimension and the spectrum. In addi-
tion, we introduce well-known relations for the scaling
behavior of both random fractals and multifractals. We
also carry out the scaling investigations for the stan-
dard deviation, the generalized dimension, and the
spectrum in our seabottom topography.

SCALING BEHAVIOR OF THE RANDOM
FRACTALS AND THE MULTIFRACTALS

First of all, we investigate the scaling behavior of
the random fractals in the seabottom topography, as
shown in Fig. 1. Because the observed data of sea-
bottom depth in the region of Fig. 1 are existed more
than those in any other region, we think that it is
certainly convenient to treat with the scaling behavior
of the random fractals and the multifractals. The scal-
ing quantities are evaluated after the extrapolation of
the data for seabottom depths on a two-dimensional
square lattice shown between 129°21°—129°54°E and
34°52°—35°19°N. The data are now taken by the
value of seabottom depths projected on 100 x 100 lat-
tice points, where the unit length between two arbi-
trary lattice points is measured by 500 m. In this

35"19'N

34°52'N

129°21'E 129°54'E
Fig. 1. Seabottom topography taken from 1/312000 scale
map between the longitude 129°21°—129°54°E and the lat-
itude 34°52°—35°19°N.

paper, since we adopt some ideas different from those
of Matsushita and Ouchi (1989), we measure the
respective positions located at the longitudinal length
x;, the latitudinal length y; and the corresponding
seabottom depth z,; and z,;, where we focus on lattice
points with in the domain of i=1—100. In this way,
as we consider two kinds of the measured position
in terms of (x;, z;) and (y;, z,;), the standard deviations
can be found. In such a case, the standard deviations
X, Y, Z, and Z, are written as follows:
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Here, % is the average value of the longitudinal
length, and y is the average value of the latitudinal
length. The scaling quantities z, and ¢, are the aver-
age values of the seabottom depth, and v,, v,, v,, and
v, are the corresponding self-affine exponents.

Next, let's introduce the generalized dimension D,
the scaling exponents o, and f; on the multifractal
structure. It has in general been known that the gen-
eralized dimension is represented as the fractal distri-
bution having the infinitely singular values by employ-
ing the box-counting method. Accordingly, the gen-
eralized dimension and the scaling exponents are
known to be given by the formula relation (Halsey
et al., 1986; Paladin and Vulpiani, 1987).
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where p; is the probability of the seabottom depth exist-
ing on the ith box with the square area € X €, and the
scaling quantity #; is the number of the box having the
probability p;. By introducing the above expressions,
the spectrum f; and o, are simply calculated in terms
of D, from the relations (Paladin and Vulpiani, 1987).

f,=0,~(g-1)D, 3
and
o, = Lig-1)p,] (9)
a7~ ggtd q

where eqs. (8) and (9) can be obtained by Legendre
transformation.

CALCULATION AND SUMMARY

We now present numerical results for the self-affinity
in our model of the random fractal structure. The
estimates for the self-affine exponent from our mea-
sured positions are compared in Figs. 2 and 3. For
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Fig. 3. Plot of the standard deviations of both Y (dashed line)
and Z, (solid line) as a function of the meridional length.
The crossover for Z, is exhibited around N.=11 km. It is
found from the extrapolation method that the slopes of the
standard deviations yield the self-affine exponents with v,
=1.0 and v,=0.957 at N<N,, and v,=1.0 and v,=0.718 at
N2N..

simplicity, we find from eqs. (1) and (3) that the self-
affine exponents, as shown in Fig.2, are obtained as
v,=1.0 and v,=0.867 at N<N,, and v,=1.0 and v, =
0.625 at N>N,, where N, is the critical length. As
shown in Fig. 3, one also estimates scaling exponents
as v,=1.0 and v,,=0.957 at N<N,, and v,=1.0 and v,,=
0.718 at N>N_, where these exponents are found from
eqs. (2) and (4). The value of self-affine exponents
in our result is slightly different from that of Kim
and Kong (1998) that is obtained numerically for
Korean mountain heights. We also can observe
directly the critical length for the crossover from the
slope of standard deviations. It is really found that
the crossover are exhibited clearly around the critical
length N=11km on our random fractal structure.
In order to clarify the scaling behavior of the multi-

Table 1. Number of the seabottom depth in our five regions
A-E between 110 m and 135 m on the seabottom topography

1 5 10 50

N (km) ,
Fig. 2. Plot of the standard deviations of both X (dashed line)
and Z, (solid line) as a function of the zonal length. The
crossover for Z, is exhibited around N,=11 km. The slopes
of standard deviations yield the self-affine exponents with
v,=1.0 and v,=0.867 at N<N,, and v,=1.0 and v,=0.625 at
N2N..

Region Seabottom depth Number of depth
A 100 m—115 m 670
B 115 m—120 m 693
C 120 m—125 m 694
D 125m—130m 780
E 180 m—I35 m 641
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Fig. 4. Plots of f, versus 0, by using the box-counting method for two cases of the square area (a) 2.5x2.5 kmy® and (b)
5x5 km?2. The values of the seabottom depths in three regions A, B, and C are respectively given by the thin solid, dashed,

and thick solid lines.

fractals for the seabottom depth, we assume that the
seabottom depths divided by the intervals 5 m are
located on each region in two—dimensional lattice.
As listed in Table 1, we take into account the data
of five regions A-E in seabottom depths between
110 m and 135 m. The box-counting method is used
for these regions of the seabottom depth, where the
square areas are 2.5 X 2.5 km? and 5 x 5 km? for two

(@)

kinds of box with £=1/20, 1/10. To find numerically
the generalized dimension and the scaling exponents,
we only restrict ourselves to the data of three regions
A, B, and C in Table 1. However, these values that
are ultimately based on the theoretical expressions
of egs. (5)-(7) are calculated numerically in our three
regions, and Fig. 5(a)-5(b) show the scaling behavior
of the generalized dimension D,, the scaling expo-
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Fig. 5. Plots of (a) 0, f,, and (b) D, as a function of ¢ on the seabottom depths in three regions A, B, and C. These scaling
quantities are estimated in the case of the square area 2.5x2.5 km’ where the vertical bars are the error bars averaged

over the square areas of three regions A, B, and C.
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Table 2. Value of D,, o, and f, calculated from the data of

the region A in Table 1, where the square area is 2.5x2.5 km?

Region Dy=f, D.. O fee
A 1.312476  1.097696 2.172183 0.231378
B 1.366726  1.108962 2.183449 0.733451

C 1.372243  1.109444 2.183931 0.366725

nents o, and f; on the multifractal structure. From
Table 2, we find numerically that the scaling expo-
nents are estimated as 0,.=1.097696 and o_.=
2.172183 only in the case of the region A. In par-
ticular, as shown schematically in Fig. 5(b), it is
obtained that the maximum value of the generalized
dimension, i.e., the fractal dimension D, is respec-
tively calculated as 1.312476, 1.366726 and 1.372243
in our three regions A, B and C. Thus as the seabot-
tom depth increases, the fractal dimension is nearly
equal to that compared to the numerical result of
Matsushita et al. (1989).

In conclusion, we have studied on the scaling behav-
ior of both random fractals and multifractals in the
seabottom topography between 129°21°—129°54 'E and
34°52°—35°19°N. From the scaling behavior of ran-
dom fractals in the seabottom topography, the self-
affine exponents for standard deviations of the sea-
bottom depth have been found numerically, as plotted
in Figs. 2 and 3, and it has been obtained from these
exponents that the crossover is occurred at the critical
length N=11 km. Specifically, by employing the box-
counting method on a two-dimensional square lattice,
the scaling behavior of multifractals has been inves-
tigated numerically. In future, we expect that a further
analytical and numerical progress for multifractals
may be possible. Futhermore, it will be useful to
apply and to reinvestigate the above formalism in other
realistic fields (Barnsley, 1988; Kruhl, 1994) such as
the structure of the ocean floor, the quantum disorder
systems, and the fractured surfaces of minerals.
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