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A Characterization on Strong Reducibility of Near-Rings

Cho, Yong Uk (Silla University)

We shall introduce new concepts of near-rings, that is, strong reducibility and left

semi 7-regular near-rings. We will study every strong reducibility of near-ring
implies reducibility of near-ring but this converse is not true, and also some
characterizations of strong reducibility of near-rings. We shall investigate some
relations between strongly reduced near-rings and left strongly regular near-rings,

and apply strong reducibility of near-rings to the study of left semi nx-regular

near-rings, s-weekly regular near-rings and some other regularity of near-rings.

1. Introduction

A near-ring is a set N with two binary operations 4+ and -+ such that
(N, +) is a not necessarily abelian group with identity 0, (X, +) is a semigroup
and (a+ b)c=ac+ bc for all a,b,c in N. In general the extra axiom a)=0 for
all @ in N is said to give a zero symmetric near-ring. Let (G, +) be a group
(not necessarily abelian).

If welet f,gM(G):= {f|f:G— G} and define the sum f+g of the two
mappings in M(G) by the rule (f+g)(x)=Ax)+g(x) for all x=G and the
product f+g by the rule (f-g)(x)=fg(x)) for all x=G, then (M(G),+, +)
forms a near-ring. Let My(G) : ={feM(G) | A0)=0}. Then (M(B),+, ) is
a zero symmetric near-ring. For the remainder results and definitions in
near-rings, we refer to G. Pilz.

In 1980, G. Mason introduced the notions of left strong regularity, right strong
regularity, left regularity and right regularity. He proved that for a zero symmetric
unital near-ring, the notions of left strong regularity, left regularity and right
regularity are equivalent. Also in 1998, G. Mason researched several properties on

strong forms of regularity for near-rings. In 1984, the properties of strong
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regularity have been slightly improved by Y. V. Reddy and C. V. L. N. Murty, and
also in 1986, that of strong regularity and strong r-regularity of semigroup were
investigated by M. Hongan.

N is said to be left strongly regular if for all a=N there exists x=N such
that a=xa2, that is, a is a left strongly regular element and N is left regular if
N is left strongly regular and regular. Right strong regularity and right regularity
are defined in a symmetric way. In the ring theory, left strong regularity and right
strong regularity are equivalent, but in near-ring theory, they are different in G.
Mason. So we say that left strongly regular and right strongly regular near-ring
is strongly regular.

More generally, a near-ring N is called left strongly m-regular if for all g=N,
there exists a positive integer » such that a” is a left strongly regular element,
left m-regular if it is left strongly n-regular and #-regular. In a symmetry way,
right strong m-regularity and right 7z-regularity are defined. Also, a left strongly
m-regular and right strongly m-regular near-ring is called strongly n-regular.

A near-ring N is called left s-unital if a=Na, reduced if it has no nonzero
nilpotent element, left bipotent if Na= Na* for all as=N, and right bipotent if
aN=a*’N for all a=N [1]. The definitions of regularity and a-regularity for

near-rings are the same concepts as for rings.

2. Some Characterizations of Strongly Reduced Near-Rings

Recall that a near-ring N is reduced if, for a€N, @*=0 implies a=0. In we
can find some properties of zero-symmetric reduced near-rings. For a near-ring
N, N,. denotes the constant part of N, that is, N.={x=N]| x=x0}. A near-ring
N is said to be strongly reduced if for asN, aZENC implies a€N,.. Obviously
N is strongly reduced if and only if, for a=N and any positive integer #,
a"eN, implies a=N., We will show that a strongly reduced near-ring is

reduced. A near-ring N is said to be left strongly regular if, for each a€N, there
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exists x=N such that a= xa’. Right strong regularity is defined in a symmetric

way. A two-sided N—subgrbup of N is a subset H of N such that

(i) (H,+) is a subgroup of (N,+),
(il) NH € H,
(iii) HNS H

For a subset S of a near-ring N, {S> denotes the two-sided N-subgroup of
N generated by S.

We give some properties of left strongly regular near-rings.

Lemma 2.1. Let N be a zero symmetric and reduced near-ring. Then for any

a, beN, ab=0 implies ba=0.

Lemma 2.2. Let N be a left strongly regular near-ring. If a=xa® for some

a,x in N then ¢=axa and ax=xa.

Theorem 2.3. Let N zero symmetric near-ring. Then the following statements

are equivalent :

(1) N is left s-unital and left bipotent;

(2) N is reduced and left bipotent;

(3) N is left strongly regular;

(4) N is regular and for any a&N there exists x=N such that ax= xa;

(5) N is left regular

Proof (1)=(2). Suppose N is left s-unital and left bipotent. Let @ be a
nilpotent element in N. Then there exists a positive integer # such that
a"=(. Since N is left s-unital and left bipotent, |

aeNa= Na*=Na*= - - - = Na"= N={0}.
Hence N is reduced. |

(2=(3). Assume N is reduced and left bipotent. Then for each a=N,
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Na= Na*= Na°.

So we have the equation a’=zxa® for some x in N. This implies that

(a—xa®)a=0. By Lemma 2.1, a(a—xa*)=0. Thus
(a—xa®)?= ala—xa®) — xa(a—xa>) =0 —0 =0

Since N is reduced, a=xa®. Hence N is left strongly regular.

(3)=(4). This is proved from Lemma 2.2.

(4)=(1). Suppose the conditions (4). Let a=N. Then there exists x=N such
that a= axa and ax= xa. Thus clearly, a=Na so that N is left s-unital. On the
other hand, for any ra<Na,

‘ ra= raxa= rxa’
which is contained in Naz?. Hence N is left bipotent.

(4)=(5)=(3) are easily proved.

We state some examples and basic properties of a strongly reduced near-rings.

Examples 1.

(1) Let N be a near-ring. If a=<{a® for each a=N, then N is strongly
reduced. In fact, if azENC then as<a® EN,.. In particular, right or left
strongly regular near-rings are strongly reduced.

(2) Every integral near-ring N is strongly reduced. To see this, let | asN
with a?€N.. Then (a—a?)a=0, and hence a=a‘eN,.

(3) Every constant near-ring is strongly reduced.

(4) Z, and Zy[x] are strongly reduced.

Proposition 24. Let N be a strongly reduced near-ring. Then the following

statements holds :

(1) N is reduced.
(2) For any a,bsN, ab=( implies ba= ).

Proof (1) Assume that a°=0. Then aZENc. Hence by hypothesis a= N, Then
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we see a= )= dla=aa=\.
(2) Assume that ab=0. Then (ba)’= baba= ) €N, Hence basN,. Therefore
(ba)?— baeN,. Then (ba)’— ba={(ba)?— ba}b= babab— bab= H) — ) =0.

Hence we obtain ba= (ba)’= ).

Proposition 2.5. For a strongly reduced near-ring N, we have the following
statement

If e=N is an idempotent, then ege= ea for all a=N.

Proof. Since (eae—ea)e=0, by above Proposition 24(2) we have

e(eae— ea)EN.,. Similarly, from (eae— ea)ea=0) we obtain
ea(eae— ea)=N.,.
Hence (eae— ea)?= eae( eae— ea) — eal cae— ea)eN, Since N is strongly

redeced, eae— ea=N,. Therefore eae— ea= (eae— ea)e=0).

Clearly, if N is a zero-symmetric near-ring, then N is strongly reduced if and
only if N is reduced. The following example shows that a reduced near-ring is

not necessarily strongly reduced.

Examples 2.

(1) Let Z;=1{0,1,2,3,4,5} with addition modulo 6 and define multiplication as

follows :

Gl b W= O

W O wWw o woio
W o W o wo 'H
O B W N —= ol
W O W O w o|lw
Ol b= W N~ O
G = W NN~ O|ot
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Obviously this is a reduced near-ring. The constant part of Z; is {0, 3}. Since

12=3 is a constant element but 1 is not, this near-ring is not strongly reduced.

(2) Let N={0,1,2,3,4,5} be additive group of integers modulo 6 and

multiplication as follows :

s W N = O
[N S« B \C NN
N SO NN
[ NI T A RN
Ol s W DN =
SN v B G RN
N s W N =

Also, this (N,4+, -) is a reduced near-ring. The constant part of N is
{0,2,4}. But this near-ring is not strongly reduced, because 12=4 is a constant
element but 1 is not a constant element. On the other hand, this near-ring N is

an example of z-regular but not regular.

Now, we obtain some characterizations of strong reducibility of near-rings.

Theorem 2.6. The following statements are equivalent for a near-ring N :
(1) N is strongly reduced.
(2) For a=N and any positive integer #)>2, a"=a""! implies a’=a.
(3) For aeN, &®=d’ implies a°= &

m—n+l__

(4) For a=N and any positive integers m> #>1, @™ =a" implies a a;

(5) For a=Nand any positive integers #>1, a”eN,. implies aeN.,.

Proof (1)=(2) Assume that a"=a""}, for a=N and a positive integer #)>2.
Then (a" '—a" ?a=0, whence ala" '—a""H)=deN, by Proposition
2.4(2).

Since #)2, (" '—a" )?=a""Ha(a" ' —a" D} —a"*ala"" ' — 2" )}eN..
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This implies ¢ !— a""*eN, because N is strongly reduced.
Hence a" '—a" ?=(a""'-a""%a=0. Continuing this -process, we. obtain
ad=a.
(2)=(3). Special case of condition (2) for #=3.
(3)=>(1). Assume a’eN. Then &’=da’a=a’0=4* By condition (3), this
implies @= a’eN,. Hence N is strongly reduced.

The proof of (1)=(4)=(5)=>(1) is left to the readers.
The following are useful statements.

Proposition 2.7. Let N be a strongly reduced near-ring and a, b, x€N.
(1) If abeN,, then aNb S N, and {ba}\UbNa = N..
(2) If ab™eN, for some positive integer #, then abeN,.
(3) If ab”"=0 for some positive integer #, then ab=(

(4) If a"*'=xa""! for some positive integer #, then = xa= ax.

Proof. (1) since abeN, (ba)®= baba= babla= bak)eN,. Since N is strongly
reduced, we have basN,. Then we obtain xbasN, for each x=N, whence
(axb) eN,. By the strong reducibility of N, we obtain axbe N, for each
x&N. Similarly we can prove that bNa & N..

(2) If ab”eN, then (ab)"=N, by (1). Since N is strongly reduced, this
implies abeN,.

(3) If ab”"=0 for some =1, then ab=N, by (2). Hence ab= abb™ = ab"=0).

""l=xa""' for some #>0. Then (a—xa)a”"=0. Hence

(4) Suppose a
(a—xa)a=0 by (3), and so (a—xa)’ =N, by Proposition 2.4(2). Since N is
strongly reduced, we have a—xaeN. Then a—zxa=(a—xa)a=(), that is

a=zxa. Now (a—ax)a= a*— axa= a*— a*=\ eN..
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Hence (a—ax)62=a(a—ax)— ax(a—ax)eN, by (1), and so a— axeN..

“Therefore a— ax=(a— ax)a=0.

Left strongly regular near-rings are studied by several authors. Since all left
strongly regular near-rings are strongly reduced, we can use it to study left
strongly regular near-rings. P. Dheena studied s-weakly regular near-rings. We
shall show that special s—-weakly regular near-rings are left strongly regular.

Proposition 2.8. Let N be a strongly reduced. If for each a=WN, there exists
x, ye N such that a=xa2ya, then N is left strongly regular.

Proof. By hypothesis, N is strongly reduced. If a=xa’va, then ya= yxa*(va).
By Proposition 2.7(4). ya= vayxa®. Thus a= xa’yayxa®.

This implies that a=xa’yayxa® N is left strongly regular.

A near-ring N is said to be left semi m~regular if, for each a€N, there exists

an element x=N such that a”=axa” for some positive integer #. This is a
general concept of Von Neumann regularity. The following two theorems are also

an application of Proposition 2.7.

Theorem 2.9. Let N be a strongly reduced near-ring. If N is left semi 7«

-regular, then N is Von Neumann regular and right strongly regular.

Proof Suppose N is a left semi m-regular near-ring. Then for each aceN,
there exists an element x=N such that &”"= axa” for some positive integer

n+1

n. Thus we see that a""!'= axa"*! for some nonnegative integer . This

implies that a= axa= a’x by Proposition 2.7(4). Hence N is Von Neumann
regular and right strongly regular.

The following is a generalization of (10, Theorem 3.

Theorem 2.10. Let N be a strongly reduced near-ring and let a,x=N. If
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a"=xa""! for some positive integer #, then a= xa’= axa and ax= xa.

Proof Assume that a"=zxa"*! for some n=1. By Propositon 2.7 (4),
a=xa’= axa. Then (ax—xa)a=0. Hence, by Proposition 2.7 (1),
(ax— xa)® = ax(ax— xa) — xa(ax— xa)€N,. Since N is strongly reduced,

ax— xasN,. Hence ax—xa=(ax— xa)a=0.

A near-ring N is said to be left strongly m-regular if, for each a<N, there

exists a positive integer #. and an element x&€N such that a"=xa""!

. As stated
in Example 1(1). a right strongly regular near-ring is strongly reduced. Hence the

following corollary can be considered as a generalization of [10, Theorem 15].

Corollary 2.11. Let N be a near-ring. Then the following statements are
equivalent :

(1) N is a left strongly regular.
(2) N is strongly reduced and left strongly #-regular.
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