A Characterization on Strong Reducibility of Near-Rings

Cho, Yong Uk (Silla University)

We shall introduce new concepts of near-rings, that is, strong reducibility and left semi π -regular near-rings. We will study every strong reducibility of near-ring implies reducibility of near-ring but this converse is not true, and also some characterizations of strong reducibility of near-rings. We shall investigate some relations between strongly reduced near-rings and left strongly regular near-rings, and apply strong reducibility of near-rings to the study of left semi π -regular near-rings, s-weekly regular near-rings and some other regularity of near-rings.

1. Introduction

A *near-ring* is a set N with two binary operations + and \cdot such that (N,+) is a not necessarily abelian group with identity 0, (N,\cdot) is a semigroup and (a+b)c=ac+bc for all a, b, c in N. In general the extra axiom a0=0 for all a in N is said to give a *zero symmetric* near-ring. Let (G,\cdot) be a group (not necessarily abelian).

If we let $f, g M(G) := \{f \mid f : G \to G\}$ and define the sum f+g of the two mappings in M(G) by the rule (f+g)(x)=f(x)+g(x) for all $x \in G$ and the product $f \cdot g$ by the rule $(f \cdot g)(x)=f(g(x))$ for all $x \in G$, then $(M(G),+,\cdot)$ forms a near-ring. Let $M_0(G):=\{f\in M(G)\mid f(0)=0\}$. Then $(M_0(G),+,\cdot)$ is a zero symmetric near-ring. For the remainder results and definitions in near-rings, we refer to G. Pilz.

In 1980, G. Mason introduced the notions of left strong regularity, right strong regularity, left regularity and right regularity. He proved that for a zero symmetric unital near-ring, the notions of left strong regularity, left regularity and right regularity are equivalent. Also in 1998, G. Mason researched several properties on strong forms of regularity for near-rings. In 1984, the properties of strong

regularity have been slightly improved by Y. V. Reddy and C. V. L. N. Murty, and also in 1986, that of strong regularity and strong π -regularity of semigroup were investigated by M. Hongan.

N is said to be *left strongly regular* if for all $a \in N$ there exists $x \in N$ such that $a = xa^2$, that is, a is a left strongly regular element and N is left regular if N is left strongly regular and regular. Right strong regularity and right regularity are defined in a symmetric way. In the ring theory, left strong regularity and right strong regularity are equivalent, but in near-ring theory, they are different in G. Mason. So we say that left strongly regular and right strongly regular near-ring is strongly regular.

More generally, a near-ring N is called *left strongly* π -regular if for all $a \in N$, there exists a positive integer n such that a^n is a left strongly regular element, *left* π -regular if it is left strongly π -regular and π -regular. In a symmetry way, right strong π -regularity and right π -regularity are defined. Also, a left strongly π -regular and right strongly π -regular near-ring is called *strongly* π -regular.

A near-ring N is called *left s-unital* if $a \in Na$, reduced if it has no nonzero nilpotent element, *left bipotent* if $Na = Na^2$ for all $a \in N$, and right bipotent if $aN = a^2N$ for all $a \in N$ [1]. The definitions of regularity and π -regularity for near-rings are the same concepts as for rings.

2. Some Characterizations of Strongly Reduced Near-Rings

Recall that a near-ring N is reduced if, for $a \in N$, $a^2 = 0$ implies a = 0. In we can find some properties of zero-symmetric reduced near-rings. For a near-ring N, N_c denotes the constant part of N, that is, $N_c = \{x \in N \mid x = x0\}$. A near-ring N is said to be *strongly reduced* if for $a \in N$, $a^2 \in N_c$ implies $a \in N_c$. Obviously N is strongly reduced if and only if, for $a \in N$ and any positive integer n, $a^n \in N_c$ implies $a \in N_c$. We will show that a strongly reduced near-ring is reduced. A near-ring N is said to be *left strongly regular* if, for each $a \in N$, there

exists $x \in N$ such that $a = xa^2$. Right strong regularity is defined in a symmetric way. A *two-sided N-subgroup* of N is a subset H of N such that

- (i) (H, +) is a subgroup of (N, +),
- (ii) $NH \subseteq H$,
- (iii) $HN \subseteq H$

For a subset S of a near-ring N, $\langle S \rangle$ denotes the two-sided N-subgroup of N generated by S.

We give some properties of left strongly regular near-rings.

- Lemma 2.1. Let N be a zero symmetric and reduced near-ring. Then for any $a, b \in \mathbb{N}$, ab=0 implies ba=0.
- **Lemma 2.2.** Let N be a left strongly regular near-ring. If $a = xa^2$ for some a, x in N then a = axa and ax = xa.
- **Theorem 2.3.** Let N zero symmetric near-ring. Then the following statements are equivalent:
 - (1) N is left s-unital and left bipotent;
 - (2) N is reduced and left bipotent;
 - (3) N is left strongly regular;
 - (4) N is regular and for any $a \in N$ there exists $x \in N$ such that ax = xa;
 - (5) N is left regular
- *Proof.* (1) \Rightarrow (2). Suppose N is left s-unital and left bipotent. Let a be a nilpotent element in N. Then there exists a positive integer n such that $a^n = 0$. Since N is left s-unital and left bipotent,

$$a \in Na = Na^2 = Na^3 = \cdot \cdot \cdot = Na^n = N0 = \{0\}.$$

Hence N is reduced.

(2)⇒(3). Assume N is reduced and left bipotent. Then for each $a \in N$,

$$Na = Na^2 = Na^3$$
.

So we have the equation $a^2 = xa^3$ for some x in N. This implies that $(a-xa^2)a=0$. By Lemma 2.1, $a(a-xa^2)=0$. Thus

$$(a-xa^2)^2 = a(a-xa^2) - xa^2(a-xa^2) = 0 - 0 = 0$$

Since N is reduced, $a = xa^2$. Hence N is left strongly regular.

- $(3)\Rightarrow (4)$. This is proved from Lemma 2.2.
- (4) \Rightarrow (1). Suppose the conditions (4). Let $a \in N$. Then there exists $x \in N$ such that a = axa and ax = xa. Thus clearly, $a \in Na$ so that N is left s-unital. On the other hand, for any $ra \in Na$,

$$ra = raxa = rxa^2$$

which is contained in Na^2 . Hence N is left bipotent.

 $(4) \Rightarrow (5) \Rightarrow (3)$ are easily proved.

We state some examples and basic properties of a strongly reduced near-rings.

Examples 1.

- (1) Let N be a near-ring. If $a \in \langle a^2 \rangle$ for each $a \in N$, then N is strongly reduced. In fact, if $a^2 \in N_c$ then $a \in \langle a^2 \rangle \subseteq N_c$. In particular, right or left strongly regular near-rings are strongly reduced.
- (2) Every integral near-ring N is strongly reduced. To see this, let $a \in N$ with $a^2 \in N_c$. Then $(a-a^2)a=0$, and hence $a=a^2 \in N_c$.
- (3) Every constant near-ring is strongly reduced.
- (4) Z_2 and $Z_2[x]$ are strongly reduced.

Proposition 2.4. Let N be a strongly reduced near-ring. Then the following statements holds:

- (1) N is reduced.
- (2) For any $a, b \in \mathbb{N}$, ab = 0 implies ba = b0.

Proof. (1) Assume that $a^2 = 0$. Then $a^2 \in N_c$. Hence by hypothesis $a \in N_c$. Then

we see a = a0 = a0a = aa = 0.

(2) Assume that ab=0. Then $(ba)^2=baba=b0 \in N_c$. Hence $ba\in N_c$. Therefore $(ba)^2-ba\in N_c$. Then $(ba)^2-ba=\{(ba)^2-ba\}b=babab-bab=b0-b0=0$. Hence we obtain $ba=(ba)^2=b0$.

Proposition 2.5. For a strongly reduced near-ring N, we have the following statement:

If $e \in N$ is an idempotent, then eae = ea for all $a \in N$.

Proof. Since (eae-ea)e=0, by above Proposition 2.4(2) we have $e(eae-ea)\in N_c$. Similarly, from (eae-ea)ea=0 we obtain $ea(eae-ea)\in N_c$.

Hence $(eae-ea)^2 = eae(eae-ea) - ea(eae-ea) \equiv N_c$. Since N is strongly redeced, $eae-ea \equiv N_c$. Therefore eae-ea = (eae-ea)e = 0.

Clearly, if N is a zero-symmetric near-ring, then N is strongly reduced if and only if N is reduced. The following example shows that a reduced near-ring is not necessarily strongly reduced.

Examples 2.

(1) Let $Z_6 = \{0, 1, 2, 3, 4, 5\}$ with addition modulo 6 and define multiplication as follows:

•	0	. 1	2	3	4	5
0	0	0	0	0	0	0
1	3	3	1	3	1	1
2	0	0	2	0	2	2
3	3	3	3	3	3	3
4	0	0	4	0	4	4
5	0 3 0 3 0 3	3	5	3	5	5

Obviously this is a reduced near-ring. The constant part of Z_6 is $\{0,3\}$. Since $1^2=3$ is a constant element but 1 is not, this near-ring is not strongly reduced.

(2) Let $N = \{0, 1, 2, 3, 4, 5\}$ be additive group of integers modulo 6 and multiplication as follows:

•	0	1	2	3 0 1 2 3 4 5	4	5
0	0	0	0	0	0	0
1	4	4	4	1	4	1
2	2	2	2	2	2	2
3	0	0	0	3	0	3
4	4	4	4	4	4	4
5	2	2	2	5	2	5

Also, this $(N, +, \cdot)$ is a reduced near-ring. The constant part of N is $\{0,2,4\}$. But this near-ring is not strongly reduced, because $1^2=4$ is a constant element but 1 is not a constant element. On the other hand, this near-ring N is an example of π -regular but not regular.

Now, we obtain some characterizations of strong reducibility of near-rings.

Theorem 2.6. The following statements are equivalent for a near-ring N:

- (1) N is strongly reduced.
- (2) For $a \in N$ and any positive integer $n \ge 2$, $a^n = a^{n-1}$ implies $a^2 = a$.
- (3) For $a \in N$, $a^3 = a^2$ implies $a^2 = a$;
- (4) For $a \in \mathbb{N}$ and any positive integers m > n > 1, $a^m = a^n$ implies $a^{m-n+1} = a$;
- (5) For $a \in N$ and any positive integers $n \ge 1$, $a^n \in N_c$ implies $a \in N_c$.

Proof. (1) \Rightarrow (2) Assume that $a^n = a^{n-1}$, for $a \in N$ and a positive integer n > 2. Then $(a^{n-1} - a^{n-2})a = 0$, whence $a(a^{n-1} - a^{n-2}) = a0 \in N_c$ by Proposition 2.4(2).

Since
$$n \ge 2$$
, $(a^{n-1} - a^{n-2})^2 = a^{n-2} \{a(a^{n-1} - a^{n-2})\} - a^{n-3} \{a(a^{n-1} - a^{n-2})\} \in N_c$.

This implies $a^{n-1} - a^{n-2} \in N_c$ because N is strongly reduced.

Hence $a^{n-1} - a^{n-2} = (a^{n-1} - a^{n-2})a = 0$. Continuing this process, we obtain $a^2 = a$.

- (2) \Rightarrow (3). Special case of condition (2) for n=3.
- (3) \Rightarrow (1). Assume $a^2 \in N_c$. Then $a^3 = a^2 a = a^2 0 = a^2$. By condition (3), this implies $a = a^2 \in N_c$. Hence N is strongly reduced.

The proof of $(1)\Rightarrow(4)\Rightarrow(5)\Rightarrow(1)$ is left to the readers.

The following are useful statements.

Proposition 2.7. Let N be a strongly reduced near-ring and $a, b, x \in N$.

- (1) If $ab \in N_c$, then $aNb \subseteq N_c$ and $\{ba\} \bigcup bNa \subseteq N_c$.
- (2) If $ab^n \in N_c$ for some positive integer n, then $ab \in N_c$.
- (3) If $ab^n = 0$ for some positive integer n, then ab = 0
- (4) If $a^{n+1} = xa^{n+1}$ for some positive integer n, then a = xa = ax.
- *Proof.* (1) since $ab \in N_c$, $(ba)^2 = baba = bab0 = bab0 \in N_c$. Since N is strongly reduced, we have $ba \in N_c$. Then we obtain $xba \in N_c$ for each $x \in N$, whence $(axb)^2 \in N_c$. By the strong reducibility of N, we obtain $axb \in N_c$ for each $x \in N$. Similarly we can prove that $bNa \subseteq N_c$.
- (2) If $ab^n \in N_c$, then $(ab)^n \in N_c$ by (1). Since N is strongly reduced, this implies $ab \in N_c$.
- (3) If $ab^n = 0$ for some $n \ge 1$, then $ab \in N_c$ by (2). Hence $ab = abb^{n-1} = ab^n = 0$.
- (4) Suppose $a^{n+1} = xa^{n+1}$ for some $n \ge 0$. Then $(a-xa)a^n = 0$. Hence (a-xa)a = 0 by (3), and so $(a-xa)^2 \in N_c$ by Proposition 2.4(2). Since N is strongly reduced, we have $a-xa \in N_c$. Then a-xa = (a-xa)a = 0, that is a=xa. Now $(a-ax)a = a^2 axa = a^2 a^2 = 0 \in N_c$.

290 Cho, Yong Uk

Hence $(a-ax)62 = a(a-ax) - ax(a-ax) \in N_c$ by (1), and so $a-ax \in N_c$. Therefore a-ax = (a-ax)a = 0.

Left strongly regular near-rings are studied by several authors. Since all left strongly regular near-rings are strongly reduced, we can use it to study left strongly regular near-rings. P. Dheena studied s-weakly regular near-rings. We shall show that special s-weakly regular near-rings are left strongly regular.

Proposition 2.8. Let N be a strongly reduced. If for each $a \in N$, there exists $x, y \in N$ such that $a = xa^2ya$, then N is left strongly regular.

Proof. By hypothesis, N is strongly reduced. If $a = xa^2ya$, then $ya = yxa^2(ya)$. By Proposition 2.7(4). $ya = yayxa^2$. Thus $a = xa^2yayxa^2$.

This implies that $a = xa^2yayxa^2$ N is left strongly regular.

A near-ring N is said to be *left semi* π -regular if, for each $a \in N$, there exists an element $x \in N$ such that $a^n = axa^n$ for some positive integer n. This is a general concept of Von Neumann regularity. The following two theorems are also an application of Proposition 2.7.

Theorem 2.9. Let N be a strongly reduced near-ring. If N is left semi π -regular, then N is Von Neumann regular and right strongly regular.

Proof. Suppose N is a left semi π -regular near-ring. Then for each $a \in N$, there exists an element $x \in N$ such that $a^n = axa^n$ for some positive integer n. Thus we see that $a^{n+1} = axa^{n+1}$ for some nonnegative integer n. This implies that $a = axa = a^2x$ by Proposition 2.7(4). Hence N is Von Neumann regular and right strongly regular.

The following is a generalization of [10, Theorem 3].

Theorem 2.10. Let N be a strongly reduced near-ring and let $a, x \in N$. If

- $a^n = xa^{n+1}$ for some positive integer n, then $a = xa^2 = axa$ and ax = xa.
- *Proof.* Assume that $a^n = xa^{n+1}$ for some $n \ge 1$. By Proposition 2.7 (4), $a = xa^2 = axa$. Then (ax xa)a = 0. Hence, by Proposition 2.7 (1), $(ax xa)^2 = ax(ax xa) xa(ax xa) \in N_c$. Since N is strongly reduced, $ax xa \in N_c$. Hence ax xa = (ax xa)a = 0.

A near-ring N is said to be *left strongly* π -regular if, for each $a \in N$, there exists a positive integer n, and an element $x \in N$ such that $a^n = xa^{n+1}$. As stated in Example 1(1), a right strongly regular near-ring is strongly reduced. Hence the following corollary can be considered as a generalization of [10, Theorem 15].

Corollary 2.11. Let N be a near-ring. Then the following statements are equivalent:

- (1) N is a left strongly regular.
- (2) N is strongly reduced and left strongly π -regular.

References

- Choudhari, S.C. & Jat, J.L. (1979). On left bipotent near-rings, *Proc. Edinburgh Math. Soc.* 22, pp. 99-107.
- Clay, J. R. (1968). The near-rings on groups of low order, *Mathe. Z.* **104**, pp. 364-371.
- Dheena, P. (1989). A generalization of strongly regular near-rings, *Indian J. Pure* and *Appl. Math.* **20**, 58-63.
- Hongan, M. (1986). Note on strongly regular near-rings, *Proc. Edinburgh Math. Soc.* **29**, pp. 379–381.
- Mason, G. (1980). Strongly regular near-rings, *Proc. Edinburgh Math. Soc.* **23**, pp. 27-35.
- Mason, G. (1998). A note on strong forms of regularity for near-rings, *Indian J. of Math.* **40(2)**, pp. 149-153.

Cho, Yong Uk

- Murty, C. V. L. N. (1984). Generalized near-fields, *Proc. Edinburgh Math. Soc.* 27, pp. 21–24.
- Pilz, G. (1983). *Near-rings*, North-Holland Publishing Company, Amsterdam-New York-Oxford.
- Ramakotaiah, D. & Sambasivarao, V. (1987). *Reduced near-ring*, in Near-rings and Near-fields, G. Betsch(Edi.), North-Holland, pp. 233-243.
- Reddy, Y. V. & Murty, C. V. L. N. (1984). On strongly regular near-rings, Proc. Edinburgh Math. Soc. 27, pp. 61-64.