단핵 및 이핵성 시프염기리간드 Cu(II) 착물의 특성과 Ascorbic Acid에 대한 산화반응

Properties of Mononuclear and Binuclear Cu(II) Schiff Base Complexes and Oxidation of Ascorbic Acid

  • 김선덕 (대구대학교 자연과학대학 화학과) ;
  • 이영석 (대구대학교 자연과학대학 화학과) ;
  • 박정은 (대구대학교 자연과학대학 화학과)
  • 투고 : 2000.03.31
  • 발행 : 2000.10.25

초록

단핵성 네자리 시프염기인 N,N'-bissalicylidene-1,2-phenylenediamine(BSPD)와 이핵성 네자리 시프 염기 리간드인 N,N',N'',N'''-tetrasalicylidene-3,3',4,4'-tetraaminodiphenyl-methane (TSTM) 및 N, N',N'',N'''-tetrasalicylidene-3,3'-diaminobenzidine (TSDB)을 합성하고, 이들 리간드의 양성자 해리상수를 전위차법으로 구하였다. 합성된 시프염기 리간드들과 Cu(II) 이온을 이용해 착물을 합성하여 순환전압-전류법으로 착물의 특성을 측정한 결과 $Cu(II)_2$-TSTM 착물은 순환전압-전류법에서 두 과정 두 단계의 환원과정으로 두 전자의 확산 지배적인 과정으로 일어남을 알았다. 또한 단핵성 착물 Cu(II)-BSPD와 이핵성 착물 $Cu(II)_2$-TSDB 및 $Cu(II)_2$-TSTM을 ascorbic acid의 산화반응에 이용한 결과, 반응속도는 $Cu(II)_2$ -TSTM>$Cu(II)_2$-TSDB>Cu(II)-BSPD의 순으로 이핵성인 $Cu(II)_2$-TSTM 착물이 가장 큰 값을 가짐을 알았다.

Mononuclear schiff base ligand N,N'-bissalicylidene-1,2-phenylenediamine(BSPD) and binuclear schiff base ligands N,N',N',N'''-tetrasalicylidene-3,3',4,4'-tetraaminodiphenyl-methane (TSTM), N,N',N'',N'''-tetrasalicylidene-3,3'-diaminobenzidine (TSDB) have been synthesized. Proton dissociation constants of the ligands were determined by potentiometric method. The synthesized ligands and complexes formed with Cu(II) ion. These complexes were investigated by cyclic voltammetry and differential pulse voltammetry. The results revealed two step diffusion controlled redox process. The mononuclear complex Cu(II)-BSPD and binuclear complexes $Cu(II)_2$-TSDB and $Cu(II)_2$-TSTM were used in the oxidation reaction of ascorbic acid. The reaction rates were in the order of $Cu(II)_2$-TSTM>$Cu(II)_2$-TSDB>Cu(II)-BSPD, indicating that the binuclear $Cu(II)_2$-TSTM complex had the fastest values.

키워드

참고문헌

  1. J. Kor. Chem. Soc. v.38 no.4 S.-D. Kim;Y.-Y. Shin;G.-H. Jang
  2. Bull. Kor. Chem. Soc. v.18 no.6 S.-D. Kim;J.-K. Kim;W.-S. Jung
  3. Anal. Sci. & Tec. v.10 no.4 S.-D. Kim;J.-K. Kim;S.-G. Roh
  4. Polyhedron v.17 no.8 S.-D. Kim;J.-K. Kim;W.-S. Jung
  5. Bull. Kor. Chem. Soc. v.17 no.1 S.-D. Kim;J.-K. Kim;W.-S. Jung
  6. J. Kor. Chem. Soc. v.36 no.2 K.-H. Chjo;Y.-K. Choi;S.-B. Kim
  7. J. Kor. Chem. Soc. v.39 no.12 S.-D. Kim;M.-S. Joung;K.-R. Jin;C.-S. Kim
  8. Am. Chem. Soc. v.120 no.10780 R.G. Konsler;Jorn. Karl;E.N.J. Jacobsen
  9. J. Kor. Chem. Soc. v.5 no.709 K.-H. Chjo;Y.-K. Choi;S.-J. Lee;C.-Y. Kim
  10. ibid. v.7 no.1 K.-H. Chjo
  11. Inorg. Chem. v.34 no.5 H. Chen;J.A. Cronin;R.D. Arther
  12. Bull. Chem. Soc. Jpn. v.37 no.1314 I. Onishi;T. Hara
  13. Chem. Soc. Dalton Trans. v.733 V.G. Cox;W. Jedral;J.J. Palou
  14. Bull. Chem. Soc. Jpn. v.41 no.2440 S. Tadashi;M. Fujinao