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I. Introduction

There are two reasons for econometricians to be interested in
temperature and tree ring time series data. First, and most obviously, the
issue of global warming and adverse climatic change is clearly of great
interest to scientists and mankind. Any additional insights that time
series econometricians can throw on the situation will be of value. Many
studies, e.g. Frisvold and Kuhn (1998) make the assumption that human
economic activity has already had detectable effects on world climate, and
seem to regard this as a proven fact. Before implementing costly
economic policies to halt climatic change, policy makers and the scientific
community have to assemble sufficient statistical evidence to make an
informed decision.

The second reason for econometricians to become involved with this
issue, concerns the growth of interest in recent years with the topic of
long memory and fractional integration in economic time series data.
While the presence of long memory in the volatility process of asset
prices seems close to an undisputed fact, e.g. Ding, Granger and Engle
(1993), Baillie, Bollerslev and Mikkelsen (1996); the relevance and validity
of the theory for the conditional mean of economic variables is extremely
unclear. In particular, this point has been convincingly argued by Granger
(1981) that the possibility of multiple break points causes the appearance
of a “spurious” form of long memory. Also, many studies have failed to
find convincing evidence for the phenomenon In macroeconomic time

series; see Sowell (1992), etc.
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With these issues in mind, the present paper examines the occurrence
of long memory in data that has significance for the important arena of
global warming. These series are also the type of physical data originally
analyzed by Hurst (1951) when he developed the theory of long memory
processes. It is of interest to see if modern time series methods can
confirm Hurst’ s original intuition that he based on simple R/S analysis of
other geophysical time series.

Before considering the econometric details of our study, it is first
worth considering the background to the global warming debate. In
particular, there appear to be several difficulties with the implicit
assumption that human economic activity has necessarily lead to global

warming:

(i) Recorded temperature series, which exist for the last 150 years,
indicate that the greatest increase in the world's temperature
appeared to have occurred in the first 75 years, while the greatest
increase in greenhouse gas emissions occurred in the last 75 years.
This seems counter to the global warming theory.

(ii) Also, satellite data of the upper atmosphere does not show evidence
of warming.

(iiiy Recently there is evidence that solar activity is related to
temperature. Clearly, this variable is genuinely exogenous to human

economic activity.

The contribution of this paper is to develop a trend stationary,
multivariate long memory model to represent the time series behavior of
annual temperature, and to simultaneously estimate models for the various

temperature series recorded at different locations. The model is also
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applied to series of tree rings, which are often used as proxies for
temperature. The model is surprisingly simple and provides a very good
description of the dynamics of temperature readings from different parts
of the world. The model also allows for a test that temperature and tree
rings are increasing over time.

This paper is strongly motivated by the interesting recent article of
Seater (1993), which appears to be one of the relatively few rigorous
statistical time series studies of temperature data. This seems very
surprising given the importance of the issue. Seater (1993) estimated
quite high order ARMA(p, ¢) models around a linear time trend and
concluded that the data was consistent with an increase of 0.45 Celsius
degrees per hundred years.) Although the 95% confidence intervals of
015 to 075 were relatively wide, they nevertheless imply an
unambiguous support for the hypothesis of global warming based on the
analysis of measured temperature data since 1850.

Section 5 of this paper examines long series of the width of tree rings,
which are frequently used to reconstruct past climatic conditions. Again,
relatively simple, fractional white noise models are found to be
remarkably successful in representing the conditional mean of the
temperature and tree ring data. These models are consistent with the
Hurst effect which has been discovered for other geophysical data.
Accordingly, estimates are reported for both univariate and multivariate
fractional models.

We find both the long memory parameter and the time trend parameter

1) Although the 95% confidence intervals of 0.15 to 0.75 were relatively wide, they
nevertheless imply an unambiguous support for the hypothesis of global warming
based on the analysis of measured temperature data since 1850.
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to be significant for the temperature data, and also for the tree ring
series since 1800. However, the tree ring series, some of which date back
to BC3400 appear stationary without any evidence for a significant time
trend. Our conclusions are mixed, but do not tend to be suggestive of the
global warming phenomenon.

Finally, we also note in passing that there appear to be subtle
differences between the natural, unadjusted tree ring series, and tree ring
data in index form, which are adjusted for trends induced by the aging
of trees in a cohort of trees. This latter measure is the one that is
invariably used by dendrochronologists and researchers trying to
reconstruct past climatic conditions. While both types of series exhibit
long memory characteristics, the unadjusted tree ring data also possess
significant ARCH effects with tranquil and volatile periods frequently
lasting twenty or thirty years. Our analysis of one such series suggests
that the adjustment procedure favored by dendrchronologists may well
change some important characteristics of the series and may result in a
series that less well correlated with the available, relatively recent

temperature data.

II. The Temperature Data

Six different annual temperature series were used by Seater (1993).
Three of the series are from the studies by JWW and are measured from
1854 through 1989. The three series are average annual temperature for
the Northern Hemisphere (JWWNH), the Southern Hemisphere (JWWSH)
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and the entire Globe (JWWG). Another three series obtained from HL are
from 1880 through 1985 and are for the Northern Hemisphere (HLNH),
the Southern Hemisphere (HLSH) and the entire Globe (HLG). The global
series, JWWG and HLG are graphed in <Figure 2> along with three tree
ring series to be described later.

Seater (1993) provides further description of the nature and limitations
of these series. After conducting a number of Dickey-Fuller unit root
tests, Seater (1993, p. 269), notes that “both the HL and JWW data
appear to be stationary,” that the first differenced series “suggests
over-differencing.”? Consequently in subsequent analysis Seater (1993)
deals with the levels of the temperature data and since the
autocorrelations of the series are quite persistent, is led to estimate quite
high order ARMA(11, 2) models with quadratic trend terms.

. Univariate Fractionally Integrated Models
for Temperature

The above described characteristics of the temperature series are
consistent with the Hurst Effect, where a time series has “long memory,”

in the sense that its autocovariance function y,, at large lag &, is

2) Diebold and Rudebusch (1991) and Hassler and Wolters (1994) examine the related
problem of evaluating by simulation the power performance of the Dickey-Fuller
unit root test when the true data generating process is either fractionally integrated
white noise or an AR(1) processes. They show that the Dickey-Fuller test performs
relatively poorly in distinguishing between the I(1) null hypothesis and the I(d)
alternative.
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—

7e = Z(k)FH % where = denotes approximate equality, and E(k) is
any slowly varying function at infinity and H is the Hurst coefficient,
and 0<H<1. Hence the Hurst effect concerns the phenomenon of very
persistent, slowly decaying autocorrelations observed from a process
which is nonetheless stationary. Hurst (1951) originally noted this effect
in river flow data and Hurst (1957) used rescaled range analysis on 900
geophysical time series that appeared to exhibit this property.

A useful model in discrete time that is consistent with this
phenomenon is the fractional unit root, or ARFIMA model of Granger
(1980), Granger and Joyeux (1980) and Hosking (1981). The ARFIMA
(p, d, g) model is,

$(LY1— L) (y,— p) = 8(L)e, )

where d denotes the fractional differencing parameter, all the roots of
#(L) and #(L) lie outside the unit circle and E(e) =0, E(eie,) =
0%, E(e,e;) =0, for t+s Then y, will be covariance stationary and
invertible for —0.5<d <0.5 and will be mean reverting for d <13

The fractional model and its extensions have recently attracted
considerable interest in econometrics and some recent developments and
estimation techniques are described in Baillie (1996). An important issue
concerns the reason for the prevalence of the Hurst effect in so many
geophysical time series such as river flows and climatic data. Granger

(1980) showed that the contemporaneous aggregation of many AR(l)

3) The corresponding infinite moving average representation weihts satisfy,
¥~ ¢}, and the autocorrelations satisfy p;= c,i%"' for large j where ¢

and c¢, are constants.
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processes with coefficients drawn from a beta distribution could be
represented by fractional white noise. Recently Park (1995) has suggested
a duration model where shocks to a system come from a certain
distribution and there is a duration or survival time associated with each
shock. Park (1995) shows that long memory processes can result from a
particular survivor probability distribution.

The approach used in this study is to use a time domain approximate
MLE based on Gaussian innovations which neglects initial observations.
The properties of this type of estimator have been widely discussed in
the literature and Baillie (1996) provides a survey of some of this work.
Some largely favorable simulation evidence is presented by Baillie, Chung
and Tieslau (1996). As noted by Li and McLeod (1986) the MLE for
the stationary and invertible ARFIMA(p, d, g0 model without an
intercept are T‘zL consistent and asymptotically normal. With a non-zero
intercept the properties of the parameter estimates are unchanged except
that the MLE of g is T%—d consistent. Dahlhaus (1988, 1989) and
Moehring (1990) provide detailed treatments of this case. If the parameter
vector is denoted by A, with first element g, then

Dr(A— A)—N[0,{DF' AQp) ' B(a) Alp)DF) '] (@)

where diag Dy = [T%"’. T%, T%] and A(.) represents the Hessian
evaluated at the true parameter values A;. Under fairly general
departures from normality the Gaussian density can still be maximized
and inference based on QMLE. On denoting B(.) as the outer product
gradient, also evaluated at the true parameter values A, and with g
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unknown, the QMLE of the parameter estimates have a limiting
distribution of,

Dr(2 = ) = N[0,{D7'A() 'B(A) Al D7) "] ®

The simplest model within this class is fractional white noise, i.e., an
ARFIMA(0, d, 0) process, (1—L)*(y; — ) =&,

From a policy perspective, a central issue in this area of research
concerns the magnitude and significance of any time trend. As noted by
Seater (1993), most statistical methods are likely to find a significant,
positive trend in the last hundred years of temperature data. Hence the
following model involving fractional behavior around a trend stationary

temperature process was considered,
1-LYy,—p—at) = ¢ @

where &, ~NID (0, ¢%), but subsequent inference is robustified. On
denoting the vector of parameters as A'(deac?) it is shown in Chung
(1997) that under the following normalization of Dy, where

diag (Dy) = [r?, 777 ri7 7] ®)

This result can readily by extended to the stationary and invertible
TS-ARFIMA(p, d, @) process, ¢(LY1—L)*(y,—p— at) = w(L)e,
with A = (dpad, - $,0, 0,0%), being (p+qg+4) in dimension,
and diag (Dp) = [r%. 777" P RIE AP I g I
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(Table 1) Estimation of Univariate Trend Sationary-
ARFIMA(0, d, 0) Models for Temperature

u -0.427 -0.490 ~0.299 -0.384 -0.377 -0.416
0.072) (0.090) (0.050) (0.062) (0.066) (0.062)

a 0.005 0.006 0.004 0.004 0.004 0.004
(0.001) 0.002) | (0.0008) | (0.0007) | (0.0008) | (0.0007)

d 0.383 0.399 0.246 0331 0.303 0.321
(0.084) (0.081) (0.095) (0.079) (0.074) (0.079)

o? 0015 0.024 0.014 0014 0.020 0.014
logL 7055 50.91 74.20 97.38 7267 9%6.25
Q10) 8.87 925 5.2 779 16.49 5.02
@10 353 9.08 13.30 492 758 6.56
my -0.22 ~0.20 -0.13 0.16 -0.04 0.02
my 2.79 264 293 260 297 254

Model : (1~ L) (y; — u—~ at) = &, &~ NID(0, 0%

Key : Standard errors are given below corresponding parameter estimates. logL is the
maximized value of the log likelihood, Q(10) and €*(10) are the Box-Pierce
Portmanteau statistics calculated from 10 residual autocorrelations for level and
squared residuals, respectively, while m; and m, are the sample skewness and
kurtosis of the standardized residuals respectively.

4) The performance of the MLE applied to the trend stationary~ARFIMA(O, d, 0)
model was assessed by detailed Monte Carlo simulations; see Chung (1997). The
really important aspect concerns the small sample bias of the MLE of the long
memory parameter, d; which has substantial bias for the smallest sample size of
T =100. The problem is exacerbated by d being 0.45 rather than 0.25 and is very
similar to the results found by others for the estimation of pure ARFIMA(p, 4, q)
models. Hence it seems necessary to have a sample size of at least 500 to avoid
problems with parameter estimation bias.
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After some experimentation it was found that the univariate trend
stationary, i.e., the TS-ARFIMA(0, d, 0) model was the most appropriate
model for the six annual temperature series. Likelihood ratio tests of
estimating TS-ARFIMA(p, d,0) models p=1,2,-+,10 and TS-
ARFIMA(p, d, @ models for p and ¢=1,2,3 failed to reject the
simple TS-ARFIMA(O, d, 0) specification. These results were also
confirmed by the AIC. The details of the estimated models are reported
in <Table 1>. In general, the impact of the trend term is found to
confirm Seater’s findings and also provide more precise estimates of the
trend and long memory parameters with tighter standard errors than
those obtained from ARMA model estimation. <Table 1> also presents
the Box-Pierce test statistic @Q?(k) based on the squared residuals.
Under the null hypothesis of conditional homoscedasticity, the statistic
@* (k) will have an asymptotic chi-squared distribution with % df. The
null hypothesis can not be decisively rejected for all HL. and JWW series.
Hence there is no evidence that measured temperature series exhibit
considerable volatility and ARCH effects.

IV. Multivariate Fractionally Integrated
Models for Temperature

While specification analysis on the individual temperature series does
not reveal any evidence of mis-specification; the cross correlations of the
residuals from the univariate ARFIMA(0, d, 0) models reveal substantial

contemporaneous correlation. For example the contemporaneous cross
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correlation between JWW global and northern hemisphere series is 0.89,
the corresponding correlation between JWW global and southern
hemisphere is 0.84 and the correlation between the northern and southern
hemisphere is 0.53. This is in marked contrast to analysis of the lagged
cross correlations, since there is no evidence significant correlation
between any of the lagged residuals.

A possible model simplification occurs here if the temperature series
are fractionally cointegrated. On applying the usual cointegration tests of
Phillips and Perron (1988), and Kwiatkowski et al (1992), the hypothesis
of no cointegration could not be rejected. It seems that although highly
correlated the individual temperature series do contain important and
distinct information.

One model that appears to be appropriate for the temperature series, is
the multivariate ARFIMA(p, d, ¢) model,

A(L)G(LXY,; —p —at) = B(L)e, (6)

where Y, = (¥, ¥, =", Yut) is a vector of the g temperature of
tree ring series. Similarly, # = (a1, a = (aya,), &~NID
(0, ), with £ symmetric and positive definite, while A(L) and B(L)
are both gxg matrices with typical elements being polynomials in the lag
operator of orders p and ¢ respectively, and G(L) is a diagonal matrix
with (7, ) element given by (1—L)“ While the general MVARFIMA
model is profligately parameterized, the set of temperature series
considered in this study turns out to have a particularly simple structure.
A set of seemingly unrelated ARFIMA models are obtained with
A(L) = B(L) = I, and (6) reduces to
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(Table 2) Estimation of Unrestricted Multivariate Trend Stationary-
ARFIMA(0, d, 0) Models for Temperature

u -0.387 -0.445 -0.238 -0.410 -0.389 -0438
(0.084) (0.098) (0.094) (0.046) (0.056) (0.047)
@; 0.005 0.006 0.004 0.004 0.004 0.004
(0.001) (0.002) (0.001) (0.0006) (0.0007) (0.0006)
d; 0.368 0371 0.378 0.242 0.253 0.256
(0.050) (0.052) (0.057) (0.045) (0.047) (0.049)
logL 511.23 549.31
Q(10) 855 8% 5.19 841 1655 517
m3 -0.20 -0.16 -0.13 022 -0.02 0.10
my 2.80 263 2.87 2.80 298 253
Arr 633.90 568.62
Model © G(LXY, — pu— at) = &,, where &,~ NID(0, 2) and G(L) is a g dimensional
identity matrix (1—L)I,, where I, is a g dimensional diagonal matrix.
key : The above table provides details on the approximate MLE of two separate

multivariate ARFIMA(0, 4, 0) models : one for the three HL series, and the other
for the three JWW series. For each model 2= 3.

The LR statistics of whether the covariance matrix is diagonal.
Ae = T[Sined - | 2]

where s2 = #,%,/ T from the individual ARFIMA(0, d, 0) regressions and 2 is
the maximum likelihood estimate of 2. The LR statistic is aymptotically
distributed as chi-squared with g(g —1)/2 degrees of freedom. The 1% and 5%
critical values are 11.34 and 7.82, respectively. All other information is as for
<Table 1>.
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(Table 3) Estimation of Restricted Multivariate Trend Stationary-

ARFIMA(O, d, 0) Models for Temperature

B -0.426 -0.486 -0.279 -0.403 ~0.386 -0.436
(0.068) (0.083) (0.067) (0.047) (0.056) (0.048)
a; 0.006 0.006 0.004 0.004 0.004 0.004
(0.001) (0.001) (0.001) (0.0006) (0.0007) (0.0006)
d 0.364 0.364 0.364 0.250 0.250 0.250
(0.050) (0.050) {0.050) (0.044) (0.004) (0.044)
log L 51087 54854
Q(10) 8.70 9.16 5.66 843 16.59 529
3 -0.22 -0.19 -0.11 0.21 -0.02 0.10
my 2.80 264 285 279 297 251
ALm 0.72 1.53
ALr 632.06 567.06
Model : G(LXY, — u — at) = &, where &~ NID(0,) and G(L) = (1—L)* where
¢ is the g dimensional identity matrix.
key : As for <Table 2>, except that A,z is the likelihood ratio test statistic for the

di=4d for all i=1,2 and 3. Under the null hypothesis A;p will have an
asymptotic chi-squared distribution with g(=23) degrees of freedom. The statistic
A Lre is again a test for diagonality of @, as was A,z in <Table 2>, LR statistics
of whether homogeneity on parmeters holds. A;m = —2(InL,— InL,), where
InL, is the maximized log-likelthood for restricted model and InL, is the
maximized log-likelihood for unrestricted model. The LR statistic is asymptotically
distributed as chi-squared with the degrees of freedom equal to the number of
restrictions. Since we have 3 degrees of freedom, the 1% and 5% critical values are
11.34 and 7.82 respectively.
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GUXY,— u—at) = ¢ )]

where,

diaglG(L)] = [Q-L)*Q-L)%-Q-L)*]

The motivation for this model is analogous to that of Zellner's (1962)
SURE system with (macro) shocks each year being common to all the
temperature series. Hence omitted variables, (e.g. sunspots) or shocks that
produce higher (lower) than normal annual temperatures throughout the
world will affect the temperatures in the northern, southern hemispheres
and globally in a similar manner. The seemingly unrelated fractional

white noise model has a log likelihood of the form,

Q) = — (—Gzl)ln(zzz) - (—g—)hlgl

- ("]2“)26;.9_1&

8

Approximate MLE were obtained by numerically maximizing the above
quantity and the results of estimating these TS-ARFIMA(O, 4, 0)
multivariate models are reported in <Table 2> and <Table 3>. Hence,
the univariate estimations reported in <Table 1> can be regarded as the
system of equations in (7) with the further restriction that £ is diagonal.
The LR test for this hypothesis for the HL set of three series is 638.17
and for the JWW series is 583.52. When compared with the asymptotic
chi squared distribution with 3 degrees of freedom, this represents

overwhelming rejection of the diagonality restriction. Hence there is
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substantial support for estimating the ARFIMA models simultaneously.

Analogously to the univariate analysis reported earlier, a range of
diagonostic tests based on LR tests of higher order TS-ARFIMA
(p, d, ¢ models were estimated. For both systems of temperature
series, the hypothesis that A(L) = B(L) = I, could not be rejected.
The estimates of the long memory parameter, d;, are close across
locations and a hypothesis of interest is that all three locations have the
same underlying long memory characteristics. This assumption leads to
the further simplification of the model in (7), so that the assumption of
an identical long memory parameter across locations, implies that
D(L) = (1—L)?I,. The model then reduces to the seemingly unrelated
fractional white noise model,

(1-L)I(y, —pu—at) = ¢ 9

where E(e;e,) = £ and is non-diagonal, while E(e,e,) =0 for
s#+ L

The results are presented in <Table 3> and the LR tests of a
common long memory parameter across locations are 0.72 for the HL
series and 153 for the JWW series. Hence, for neither system of
temperature data can the hypothesis of the same long memory
parameter be rejected across regions. The estimate of 4 from the HL
data is 0.364, and for the JWW data is 0.250; in both cases the
asymptotic ¢ statistic for d=0, exceed 6. Hence, surprisingly simple
long memory models are found to be adequate across the different
temperature series. The estimate of the trend parameter is quite

similar to that of the univariate analysis.
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V. Analysis of Tree Ring Series

Four tree ring series were chosen to analyze alongside the temperature
data. The Campito series is the annual width of tree rings from a sample
of Bristlecombe pine trees on Mount Campito, California. The series
comprises a total of 5405 annual observations from 3436BC through
1969AD. The series was collected by Valmore C LaMarche, now
deceased, of the University of Arizona and given to Ian McLeod of the
University of Western Ontario, who kindly made the data available to
me.

The second series, Trier, are the annual width of a sample of oak trees
outside the town of Trier on the west bank of the Rhine in Germany.
There are 1481 observations from 822AD through 1964 and are given in
Lamb (1977). Lamb reports that for most years the tree ring width was
the sample mean of a sample of between 10 and 36 trees; while the
sample size was only between 1 and 9 for the years before 910 and the
sample size was between 4 and 8 for the years between 1060 and 1129.

The third tree ring series is Tree. Br, which is obtainable from Briffa
et al. (1990) and are summer temperature reconstructions from tree rings
in northern Scandinavia from 500AD through 1980. The three tree ring
series are graphed in <Figure 2> from 500AD though 1980, and are also
plotted in <Figure 1> from 1854 through 1985 alongside two temperature
series. The Tree. Br series was also analyzed by Seater (1993). While
the Campito and Trier data reflect raw, unadjusted measurements of a

sample of tree ring widths; the Br data are adjusted to “reconstruct”
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(Figure 1) Tree Rings Series of Width or Index from 500 to 1980:
Br-Campito-Trier
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(Figure 2) Temperature and Tree Ring Series of Width or Index
from 1854 to 1989
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previous climatic conditions. The science of dendrochronology emphasizes
temperature and water stress as determining tree ring growth. As
described by Fritts (1976), little water stress and high temperature are
believed to positively influence tree ring growth, while high temperature
combined with low water stress can reduce tree ring growth, since water
loss from the leaves is increased. As noted by Seater (1993) a known
“statistical deficiency” of the Briffa et al. data concems the adjustments

to the tree ring series. In particular, if 7R, is the width of tree rings in

year f, and MX is the maximum latewood density of the type of tree;
then the unobserved temperature, T, in year ¢ is reconstructed from
the formula, 7, = .081TR, + .109TR,.; + .600MX, + .052MX ;..

The fourth series, CA046, is taken from a sample of tree ring data
provided by the National Geophysical Data Center at Boulder, Colorado).
Series CA046 one of many such series and was chosen for this study on
the basis of its length and lack of missing observations. All the series at
the National Geophysical Data Center are adjusted and are produced in
an index number from where the width of tree rings series is divided by
a trend estimate obtained from fitting a polynomial function of time to
the width of tree ring series. Schweingruber (1988), Cook and Kairiukstis
(1990) describe the technique in detail. Such indices are designed to
adjust for the increasing age of the tree(s), but can also have the
undesirable effect of removing. long~term climatic changes. Hence the
smoothed tree ring series are designed to reduce variation in the tree
ring series, but may also substantially reduce the quality of the
information in the tree ring series concerning past climatic conditions.

Tests of long memory effects and experimentation with various
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(Table 4) Estimation of ARFIMA(Q, d, 2)-FIGARCH(1, a3, 1)
Models for Tree Ring Width and Index Series

,u 0040 | 46864 | 37412 | 35959 | 1385 1.186 1215
01200 | (3541) | (3694 | (4559 | (0131) | (0.134) | (0.145)

d 0324 0.450 0.444 0.452 0.470 0412 0.422
0022) | 00120 | (0.012) | (0013) | (0060 | (0.061) | (0.064)

6, - - - - 0.138 0.105 0.125
007D | (0.068) | (0.070)
6, - - - - -0088 | -0.117 | -0.019
0045 | (0.044) | (0.045)

] - - - 0.254 - - 0.167
(0.055) (0.051)

2 0261 | 63954 | 1074 3365 0042 | 00009 | 0011
00100 | (1709) | 042D | (1.200) | (0.002) | (0.0004) | (0.004)

a - - 0.034 - - 0.043 -

(0.007) (0.012)

B - - 0950 | 0766 - 093 | 0086
0.012) | (0.049) 0017 | (0.067)

é1 - - - 0633 - - -

(0.066)

logL | -110741 | -189069 | -18802.8 | -18795.1 | 190.12 | 22069 | 216.07
T 1481 5405 5406 5405 1143 1143 1143
Q(20) 3341 2157 2172 2153 1491 1523 1613
Q0 2379 | 23879 | 3436 1573 19765 | 2487 3245
my -0.03 -0.63 -0.60 ~0.66 0.08 0.00 -0.00
my 3.19 456 442 456 376 307 3.24

Model : (1—L)d(y: —) =&+ 0160+ G281
&, = z,0, where =z, is 1id. with E(z,)=0 and wvar(z,)=1
ol =w+pfol  +{1-AL- (1~ $LX1-L1)"}&

key : Standard errors are given below corresponding parameter estimates. Log L is the
maximized value of the log likelihood, and Q(20) and Q%*20) are the Ljung-Box
Portmanteau statistics calculated from 20 residual autocorrelations, while m,; and m,
are the sample skewness and kurtosis of the standardized residuals respectively.
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univariate models were implemented on the various tree ring series. The
most appropriate estimated models are reported in <Table 4>. Various
fractionally integrated univariate are remarkably successful in representing
very long series of tree ring widths, which are often used as a proxy for
temperature. <Table 4> also presents the Ljung-Box test statistic Q*(%)
based on the squared residuals. Under the null hypothesis of conditional
homoscedasticity, the statistic @*(k) will have an asymptotic chi-
squared distribution with % df. The null hypothesis can be decisively
rejected for Campito and Trier tree ring series, while Q%(20) is not
significant even at the .05 level for Br tree ring series.

Consequently, ARFIMA(O, 4, 2)-FIGARCH(1, 4,1) models were
estimated for the Tree. Br, Mount Campito bristlecone pine series and the
Trier oak trees. The model is then of the form,

(- L%y, —w = (1-6,L-6LYe, w
=0+ Bl +{1-BL-(1-¢L)(1-L)°}é

where & = z,0,, where 2z, is .4.d.(0,1) process, o a
time-varying, positive and measurable function of the information set at
time #—1. Hence, ¢° = o/[1—8(1)] + A(L)e?, where A(L) ={1—
[1=B8(L)1 '¢(LY1—L)?}. For large lag k, the impulse responses are
A, = ck?!, which generates slow hyperbolic rate of decay on the
impulse response weights of the conditional variance ¢%. The maximum
likelihood estimates of the GARCH parameters in <Table 4> are
extremely similar across tree ring series with the estimated value of

(a+ B8;) being close to unity. This indicates the possible existence of a
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(Table 5) Estimation of Trend Stationary ARFIMA(O, d, 2)-FIGARCH

B
¢

log L
T
Q20)
@(20)
mg
™y

0.057
(0.172)
~0.00029
(0.0002)
0.324
(0.022)

0.261
{0.010)

-1107.40
1481
3341
23.70
-0.01
3.19

)

50.481
(3.375)
-0.0018
(0.0016)
0.448
(0.012)

63.929
(1.703)

18905.77
5405
21.37

24499
-0.59
482

P

44.890
(6.943)
-0.0034
(0.0018)
0.443
(0.012)

1.088
(0.440)
0.035
(0.007)
0948
(0.012)

-18800.01
5405
2141
3418
-0.56

437

-0.0033
(0.0018)
0.452
(0.012)

0.254
(0.056)
3401
(1.233)

0.761
(0.051)
0.630
(0.067)
-18792.66
5405
21.28
16.12
-0.63
452

iy

1.484
(0.112)
-0.0004
(0.0002)
0.439
(0.057)
0.110
(0.069)
-0.099
(0.044)

0.042
(0.002)

192.44
1143
14.19

20291
0.21
383

(1, 8, 1) Models for Tree Ring Width and Index Series

%

1.350
0127
-0.0004
{0.0002)

0.391
(0.051)

0.091
(0.060)
-0.021
(0.041)

0.00084
(0.0004)
0.043
0.012)
0.936
(0.017)

224.03
1143
15.12
20.83
0.11
3.09

0.107
(0.072)

21953
1143
16.10
2714
011
3.16

Model : (1—-L) (3, —p—a) = &+ 0,6, + 0261,
&, = 2,0, where z, is iid with E(z,)=0 and var(z,) =1
ol =w+ ot +{1-8L— (1-¢,LX1-L)’}e}

key . As for <Table 4>,

- 537 -




Sang-Kuck Chung

{Table 6) Estimation of Trend Stationary ARFIMA(0, d, 0)

Models for Ring Series

Br -0.068(0.220) -0.015(0.215) -0.346(0.207)
Campito 39.565(4.443) 42.036(3.703) 44.742(3.895)
# Trier 110.933(6.560) 100.398(10.219) 99.,102(11.878)
CA046 8.941(0.955) 10.561(0.479) 11.358(0.470)
Br 0.022(0.022) 0.001(0.003) 0.006(0.003)
Campito 0.116(0.042) 0.164(0.052) 0.187(0.071)
a Trier -0.058(0.066) 0.009(0.146) -0.008(0.217)
CA046 0.043(0.009) 0.052(0.007) 0.061(0.009)
Br 0.265(0.065) 0.201(0.079) 0.196(0.091)
d Campito 0.341(0.065) 0.255(0.078) 0.248(0.088)
Trier 0.276(0.073) 0.375(0.093) 0.463(0.108)
CA046 0.329(0.061) 0.094(0.082) 0.062(0.093)
Br 0.331(0.035) 0.331(0.042) 0.320(0.045)
Campito 70.765(7.652) 80.590(10.537) 80.728(11.968)
@ Trier 267.139(29.412) 291.510(39.130) 276.630(42.433)
CA046 3.502(0.379) 3.558(0.465) 3.382(0.501)
Br 181 127 101
T Campito 171 117 91
Trier 165 111 85
CA046 171 117 91
Br -156.67 -110.02 ~85.74
log L Campito -606.80 -422.80 -32892
g Trier -695.11 ~472.47 -359.57
CA046 -349.81 -240.26 -184.56
Br 1255 8.36 6.14
LM Campito 454 743 895
Trier 821 6.78 6.81
CA045 5.45 412 5.85
Br 1767 2384 1657
Q(10) Campito 9.22 790 732
Trier 1856 12.88 6.23
CA046 1592 10.56 1057
Br 1768 1274 10.18
Campito 549 7.1 877
@ (10) Trier 809 718 682
CA046 5.81 2.77 415
Br 022 015 027
m Campito -047 -0.51 -0.57
3 Trier -0.24 -0.20 -0.02
CA046 -0.05 -0.12 ~0.16
Br 327 306 304
m Campito 339 339 357
4 Trier 275 273 293
CA046 2.60 2.68 2.62
key : As for <Table 1>.
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fractionally integrated GARCH process.

It should be noted that the statistically significant positive trend
coefficients may well be due to small sample sizes; ie., due to
temperature series. We therefore need to check whether there is a time
trend in tree ring series. The maximum likelihood estimates for the
parameters in (10) with trend term are given in <Table 5>. In particular,
it was found that the hypbthesis that =10 could not be rejected for Br
and Campito tree ring series, while it is significant at the .05 level for
Trier series. Hence, there was no apparent evidence of global warming
over the entire history of these series.

For all the tree ring series models reported in <Table 6>, the long
memory parameter, 4 is highly significant different to zero and is
slightly higher than the estimates of 4 obtained for the temperature data.

Estimates of TS-ARFIMA(0Q, 4, 0) models for tree rings estimated
over the period of time when the world s economic activity and
emissions of green house gasses have increased. Three separate sub
samples were chosen, staring from 1800, 1854 and 1880 until the end of
the sample. The Campito and CA046 series have positive trend
coefficients, which are significantly different from zero for all three
sub-periods. The trend coefficient is always positive for the Br series,
but is only significant since 1880. While the parameter associated with

time trend is not significantly different from zero for the Trier series.
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VI. Concluding Remarks

The correlation between the Br series and measured temperature
between 1876 and 1950 is about .50 and was previously analyzed by
Seater (1993) who estimated an AR(17) around a linear time trend.
Interestingly, Seater (1993) found the time trend coefficient to be negative
and insignificant over the periods of 1880 through 1980. Some of the
unadjusted tree ring series displayed long memory volatility behavior and
consequently ARFIMA-FIGARCH models were estimated in <Table 5>.
The FIGARCH model is described in detail by Baillie, Bollerslev and
Mikkelsen (1996) and again estimation is performed by QMLE.

However; very long series of observations on the width of tree rings,
which are often used as a proxy for temperature are also extremely well
described by fractionally integrated models. However, there is no apparent
evidence of a significant time trend superimposed on the long memory
behavior for the long records, sometimes in excess of 1,000 years, for the
tree ring records. Analysis of very short records of {ree ring series can
also give rise to a significant estimate of the time trend parameter. This
is also consistent with the estimation of a trend stationary ARFIMA
model to data generated from a stationary fractionally integrated process.
Hence, although it is hard to make strong conclusions on the basis of the
last hundred years of temperature data; the series are consistent with
being generated by a stationary, long memory process. The statistically
significant trend coefficients may well be anomalous and due to small

sample sizes.
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These results cast some doubt on the basic assumption behind many
current studies that the world’s climates are definitely warming. The
notion that human activity has caused the increase in world temperature
over the last 150 years also seems inconsistent with the fact that the
greatest recorded increase in temperature occurred between 1850 and
1925, while the greatest increase in greenhouse gas emissions occurred
since 1925. Also, there is some more recent scientific evidence that
satellite data of the upper atmosphere do not show much indication of
increased temperature. Other work has suggested that temperature
movements follow solar activity.

While it is important for policy makers to be aware of the possibility
of climatic change, appealing to results obtained from relatively short
series of annual temperature series does not seem to be appropriate. The
long range cycles and Hurst effect in series related to temperature
indicate the potential for making false conclusions from such short series.
Further statistical analysis of the information contained in some of the

long historical geophysical data appears worthwhile.
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ABSTRACT

Global Warming Trend : Further Evidence From Multivariate

Long Memory Models of Temperature and Tree Ring Series

Sang-Kuck Chung

This paper shows that various fractionally integrated univariate and
multivariate are remarkably successful in representing annual temperature
series and also very long series of tree ring widths, which are often used as
a proxy for temperature. The analysis also suggests that human recorded
temperature series are not inconsistent with being generated by a stationary,
long memory process. From the empirical results, we should be noted that
the statistically significant positive trend coefficients may well be due to
small sample sizes. These results cast some doubt on the basic assumption

that global warming is definitely occurring.
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