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ON BOUNDED OPERATOR @,
IN WEIGHT BLOCH SPACE

K1 SEonGg CHOI

ABSTRACT. Let D be the open unit disk in the complex plane C.
For any g > 0, the operator )4 defined by

Qqf(2) :(I/D %dw, z € D.

maps L% (D) boundedly onto By for each ¢ > 0. In this paper,
weighted Bloch spaces B, (g > 0) are considered on the open unit
ball in C". In particular, we will investigate the possibility of exten-
sion of this operator to the Weighted Bloch spaces B, in C™.

1. Introduction
Let D be the open unit disk in the complex plane C. The Bloch

space of D consists of holomorphic functions f on D such that
sup{(1 —|2[*)|/'(2)| | z € D} < +o0

Specifically, for each ¢ > 0, we let B, denote the space of analytic

functions f on D satisfying
sup{(1 — [2|")?|f'(2)| : z € D} < +o0

These spaces are a certain type of Besov space.
Throughout this paper, C" will be the Cartesian product of n
copies of C. For z = (z1,22,...,2,) and w = (wy,wa, ..., wy,) in
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C™, the inner product is defined by < z,w >= 2?21 zjw; and the
norm by || z ||> =< 2,2 > .

Let B be the open unit ball in the complex space C* and S the
boundary of B. The Bergman metric (on B ) bp : B x C" — R is
given by

n+1

W[O—HZH WEN™ +1<28>1].

bp(2,€) =
If f € H(B), where H(B) is the set of holomorphic functions on B,
then the quantity @ f is defined by

Qf(,z)zsupM z€B, &eC",

lel=1 0B(2,&)

where V f(z) = (2L A7) is the holomorphic gradient of f.

Oz1°? ' Ozp,

A holomorphic function f: B — C is called a Bloch function if

sup Qf(z) < oo .
z€B

In [7], Timoney showed that the linear space of all holomorphic

functions f : B — C which satisfy

sup(1— | %) | 7£(2) || < oc
is equivalent to the space B of Bloch functions on B.

In [5] , we have introduced the weighted Bloch Spaces B,(q > 0)
on the open unit ball B in C" which extend the notion of Bloch space
B to larger classes of holomorphic functions on B.

For each ¢ > 0, the weighted Bloch space of B, denoted by B,,
consists of holomorphic functions f : B — C which satisfy

sup(1— || 2 ) | vf(2) || < oo
z€B
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Clearly, B, are increasing function spaces of ¢ > 0. In particular,
B, = B.

We proved in [4] that the space B, is a Banach space and that B,
can be identified with the space of holomorphic functions f with the

conditions:
sup{(1 — || z )9 Yf(2)| | z€ B} <o

for all ¢ > 0.
For any g > 0, the operator (), is defined by
Qqf(2) = q/D %dw, z € D.
It is well known that the operator @), maps L°°(D) boundedly onto
B, for each ¢ > 0. In this paper, we will investigate the possibility
of extension of this operator to the Weighted Bloch spaces B, in C".
For any ¢ > 0, let ), denote the operator defined by

_ f(w)
Qqf(z) = cq_l/B =<z >)n+qdy(w), z € B,

In this paper, we will prove that @), maps L (B) boundedly onto B,
and that, for each ¢ > 0, the operator (), maps Cy(B) onto B,

2. Weighted Bloch spaces
Let v be the Lebesgue measure in C* normalized by v(B) = 1.
Let o be the rotation invariant surface measure on S normalized by

0(S) = 1. The measure y, is the weighted Lebesgue measure:
2
dpig = cq(1 = || 2 [|7)%dv(2),

where ¢ > —1 is fixed, and ¢, is a normalization constant such that
pq(B) = 1.



134 KI SEONG CHOI

Tueorem 1. If f € L, (B)N H(B), ¢> —1, then

e =au [ ¢ Al du(w).

1— < z,w >)ntatl

Proof. See[5. Theorem 2 |. O

THEOREM 2. Suppose ¢ > —1,z € B, and f € B,. Then

_ c (L—[lw [*)Vf(w) -2
f(z) = 10) + njq /B <zyw> (1— < z,w >)n+qdzx(w).
Proof. See[5. Theorem 3]. O

THEOREM 3. For z € B, cis real, t > —1, define

(1= w]®)
Ie4(2) :/B - < z,w > |n+1+c+tdy(w)7 z € B.

Then,
(i) I +(%) is bounded in B if ¢ < 0;
(ii) To4(2) ~ —log(1— || z ") as || 2 |= 17
(iii) Is(2) ~ (1= || 2 [|)~¢ as || z || 17 if ¢ > 0.

Proof. See [6, Proposition 1.4.10 |. O

THEOREM 4. Suppose ¢ > 0. Then f is in B, if and only if
(1—|| 2 ||1))9|f(2)| is bounded on B.

Proof. First assume that f is in B,;. By Theorem 2,

f(Z) — f(O) + Cq /B (1 - ” w H )q Vf(’w) tZ dV(’w).

n+q <zyw > (1— < z,w >)nta

It follows that

6= O S [ e vt

n+q yw > 1= < z,w > |
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The factor | < z,w > | in the denominator does not change the growth
rate of the integral for z near the boundary. Thus, Theorem 3 implies
that there is a constant C' > 0 such that

1f(z) = fO)<C fll,a=1llz>)"@Y, z€ B.

This shows that (1 — || z |[*)9=1f(2) is bounded on B.
Conversely, if (1— || z ||*)97|f(z)| < M for some constant M > 0,
then

e=af ((1 i [ O

1— < zyw >)nta
by Theorem 1.

Differentiating under the integral sign, we obtain

V() =
c / (n+g)(1= < zw >yt o)1 =l T w)
‘B (1- < z,w >)2(n+9) ’
1
195G) I e+ M | (o).

By Theorem 3 , there exists a constant C' > 0 such that

2\ —
Vi) |l < CMA -] z[)~*
for all z € B. This clearly shows that f is in B, . 0

3. Bounded Operator (), related with weighted Bloch spaces
Let N denote the set of natural numbers. A multi-index « is an
ordered n-tuple @ = (1,2, -, ) with a; € N,j =1,2,--- ,n.

For a multi-index a and z € C™, set

ol =a1 +as+---+ayp
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al = ajlas! - - ay!
o [e5Ne D) a
z — Zl Z2 b 'Znn

For any g > 0, let ), denote the operator defined by

f(w
Qquf(z) = Cq_l/B i< z(, w)>)n+qdl/(w), z € B.

Let Cy(B) be the subspace of complex-valued continuous functions on

B which vanish on the boundary, C'(B) the space of complex-valued

continuous functions on the closed unit ball B.

THEOREM 5. For each q > 0, the opertor (), maps each function

of the form w®w” to a monomial.
Proof. Since

< z,w >™

= (21W1 + 20Wa + - - - + 2, W,)™

m! , ' '

= E 7@ T .' (lel)zl (,252@2)12 ... (ann)ln7
. . . 1:29¢ ...,

t1+t2+Fin=m

1
(1— < z,w >)nta

tg)(n+q+1
:1+(n+q)<z,w>+(n q)(;z' a )<z,w>2

1 2
Lt tgt1)(ntqt )<z,w>3+---
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Hence,
Qq(zazﬂ)
w*wP
=c,_ d
“a 1/3 (1— < z,w >)nta v(w)
o0
= cq_l/ WP dv(w) + cq_1 Z Z
B m=141+i24-Fip,=m
—1)! !
(n+q+m ) ‘ .m . ZI/ wawﬂwIdy(w),
ml(n+q— 1)1 dligh. .. d,! B
1= (i1,40, ... in)
=cyz’ for some J
by [6, Prop.1.4.8, Prop.1.4.9] . O

THEOREM 6. For each g > 0, the operator ), maps L*>°(B) bound-
edly onto B,

Proof. Let f(z) = Qq9(2), where g € L°°(B). Then
_ g(w)
1) = e | (),

9(w)(—w)

1— < z,w >)ntatl dv(w),
dv(w)
< zyw > et

VIE) = (n+ g)egr /B :

19 1< ot e g e [ =
B
By Theorem 3,
| VfE) < (n+a)eg-1 ]l g llo (1= [ 2 [I*) 77
Thus,
A=l 21D II< Cllgllo -

It is also clear that |f(0)] < c¢4—1 || g ||co. Thus,

I fllg= 1FO)] + sup{(1— || w [|))? || Vf(w) || |w € B}

< (CHcg-1) [ 9l -

Hence, ), maps L°°(B) boundedly into B,. O
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THEOREM 7. For each ¢ > 0, the operator ), maps Cy(B) onto
B,

Proof. Let f € B, (q>0). Then (1— || 2z ||2)27|f(2)| is bounded
in B, by Theorem 4. By Theorem 1,

f(Z) — cq—l/B (1_ || w ||2)q_1f(w) dy(w) — Qqh(Z) 7

(1— < z,w >)nta

where h(w) = (1— || w ||?)? ! f(w) is in Co(B). Therefore, Q, maps
Co(B) onto B,. That @), maps L>°(B) onto B, is obvious. O
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