ON STRICT EXTENSIONS OF STRONG δ-FRAMES

Seung On Lee and Eun Ai Choi

Abstract

In this paper, we introduce strict extensions on a δ frame, and show that if L is a regular strong δ-frame, then $\mathcal{T}_{X} L$ is a regular δ-frame.

1. Introduction

The study of topological properties from a lattice-theoretic viewpoint was initiated by H. Wallman [14]. In particular, C. Ehresmann [5] and J. Bénabou [2] took the decisive step of regarding local lattices as generalized topological spaces in their own right. Such a local lattice is called a frame, a term introduced by C. H. Dowker and studied by D. Papert [4], J. R. Isbell [9], B. Banaschewski [1], P. T. Johnstone [10], Jorge Picado [11], and J. Wick Pelletier [15].

We note that continuous lattices and frames are characterized by certain distributive laws. We also note that a frame L is a complete lattice but in the theory of frames, we use only finite meets. Considering countable meets, we will get more properties of frames.

In this paper, a partially ordered set is also called a poset. If \leq is a partial order on L, the smallest (largest, resp.) element of L, if it exists, is the element 0 (e, resp.) such that $0 \leq x$ ($x \leq e$, resp.) for each $x \in L$. Smallest (largest, resp.) elements are unique when they exist, by antisymmetry. We call 0 (e, resp.) the bottom (top, resp.) element of L. From now on, we denote a poset (L, \leq) simply as L.

[^0]Definition 1.1. A map $f: S \rightarrow T$ between two posets S and T is called an isotone if for $a \leq b$ in $S, f(a) \leq f(b)$ in T.

Definition 1.2. Let S and T be posets and let $f: S \rightarrow T$ and $g: T \rightarrow S$ be isotones. Then (f, g) is said to be an adjunction or a Galois connection between S and T provided for any $x \in S$ and $y \in T, f(x) \leq y$ iff $x \leq g(y)$. In this case, f is said to be a left adjoint of g and g a right adjoint of f, and we write $f \dashv g$.

Let L be a poset. We say that L is a complete lattice if every subset A of L has the least upper bound and the greatest lower bound.

Every left adjoint preserves joins and every right adjoint preserves meets when they exist. Let S be a complete lattice and T a poset. Then $f: S \rightarrow T$ is a map which preserves joins iff f is an isotone and f has a right adjoint. Dually, if S is a complete lattice and T is a poset, then a map $f: S \rightarrow T$ has a left adjoint and f is an isotone iff f preserves meets.

Definition 1.3. ([6]) A complete lattice L is called a frame (or complete Heyting algebra) if for any $a \in L$ and $S \subseteq L$,

$$
a \wedge(\bigvee S)=\bigvee\{a \wedge s: s \in S\}
$$

Definition 1.4. Let L be a frame. Then we say :
(1) For $A, B \subseteq L, A$ refines B if for any $a \in A$, there is $b \in B$ with $a \leq b$, which is denoted by $A \leq B$.
(2) For $a, b \in L, a$ is well inside b if there is $c \in L$ with $a \wedge c=0$ and $c \vee b=e$. In case, we write $a \prec b$. Equivalently, $a \prec b$ iff $a^{*} \vee b=e$, where $a^{*}=\bigvee\{x \in L: a \wedge x=0\}$, i.e., a^{*} is the pseudo complement of a.
(3) For $A \subseteq L, A$ is a cover of L if $\bigvee A=e$. The set of all covers of L is denoted by $\operatorname{Cov}(L)$ and
$C \operatorname{Cov}(L)=\{A:$ there is a countable cover B with $B \leq A\}$.
(4) L is regular if for any $a \in L, a=\bigvee\{x \in L: x \prec a\}$.
(5) For $x, y \in L$, we define $x \rightarrow y=\bigvee\{z \in L: x \wedge z \leq y\}$, so that $x \wedge z \leq y$ iff $z \leq x \rightarrow y$.

Definition 1.5. ([3]) A frame L is called a δ-frame if for any $a \in L$ and countable subset K of L,

$$
a \vee(\bigwedge K)=\bigwedge\{a \vee k: k \in K\}
$$

Definition 1.6. ([3]) A frame L is called a strong δ-frame if for any countable family $\left(A_{k}\right)_{k \in \mathbb{N}}$ of subsets of L,

$$
\bigwedge_{k \in \mathbb{N}}\left(\bigvee A_{k}\right)=\bigvee_{f \in \prod_{k \in \mathbb{N}}}\left(\bigwedge_{k}\left(\bigwedge_{n \in \mathbb{N}} f(n)\right)\right.
$$

where $f=(f(n))_{n \in \mathbb{N}}$.
Every strong δ-frame is a δ-frame.
Definition 1.7. ([13]) Let L and M be frames (δ-frames, resp.). Then a map $f: L \longrightarrow M$ is called a homomorphism (δ-homomorphism, resp.) if f preserves a finite meets and arbitrary joins(countable meets and arbitrary joins, resp.).

DEFINITION 1.8. A frame homomorphism $f: L \longrightarrow M$ is said to be :
(1) open if for $x, y \in L, f(x \rightarrow y)=f(x) \rightarrow f(y)$.
(2) dense if $f(x)=0$ implies $x=0$.

Definition 1.9. ([8]) Let L be a quasi ordered set and $F \subseteq L$. Then we say that F is a filter (δ-filter, resp.) on L if F satisfies the following :
(1) F does not contain 0 .
(2) $F=\uparrow F=\{x \in L: a \leq x$ for some $a \in F\}$.
(3) For any finite (countable, resp.) subset K of F, there is $a \in F$ such that for all $x \in K, a \leq x$.

Proposition 1.10. Let L be a strong δ-frame. Then $\operatorname{Cov}(L)$ and $C \operatorname{Cov}(L)$ are δ-filters.

Proof. It is trivial by Proposition 2.7 in [3].
For a set X of filters on a frame L, let $\mathcal{P}(X)$ denote the power set lattice of X and $L \times \mathcal{P}(X)$ the product frame of L and $\mathcal{P}(X)$. Then $\left\{\left(x, \sum\right) \in L \times \mathcal{P}(X)\right.$: for any $\left.F \in \sum, x \in F\right\}$ is a subframe of $L \times \mathcal{P}(X)$, which is denoted by $\mathcal{S}_{X} L$. And the restriction $s: \mathcal{S}_{X} L \rightarrow L$ of the first projection $\operatorname{Pr}_{1}: L \times \mathcal{P}(X) \rightarrow L$ is an onto, dense and open homomorphism.

For any $x \in L$, let $\sum_{x}=\{F \in X: x \in F\}$. Then the right adjoint s_{*} of s is given by $s_{*}(x)=\left(x, \sum_{x}\right)$ for any $x \in L$. Since s_{*} preserves meets, $s_{*}(L)$ is closed under finite meets ; and hence the subframe $\mathcal{T}_{X} L$ of $\mathcal{S}_{X} L$ generated by $s_{*}(L)$ is given by $\mathcal{T}_{X} L=\left\{\bigvee\left\{\left(x, \sum_{x}\right)\right.\right.$: $x \in A\}: A \subseteq L\}$. Clearly the restriction $t: \mathcal{T}_{X} L \rightarrow L$ of s is an onto dense homomorphism ([7]).

2. Strict Extensions of a δ-Frame

Definition 2.1. Let L be a δ-frame and $M \subseteq L$. Then M is said to be a sub- δ-frame of L if M is closed under countable meets and arbitrary joins in L.

If M is a sub- δ-frame of a δ-frame L, then M is also a δ-frame.

Let L and M be δ-frames. For any subset $\left\{\left(x_{\alpha}, y_{\alpha}\right): \alpha \in \Lambda\right\}$ of $L \times M$ and $\left\{\left(x_{i}, y_{i}\right): i \in \mathbb{N}\right\} \in \operatorname{Count}(L \times M)$, we define

$$
\bigvee_{\alpha \in \Lambda}\left(x_{\alpha}, y_{\alpha}\right)=\left(\bigvee_{\alpha \in \Lambda} x_{\alpha}, \bigvee_{\alpha \in \Lambda} y_{\alpha}\right) \text { and } \bigwedge_{i \in \mathbb{N}}\left(x_{i}, y_{i}\right)=\left(\bigwedge_{i \in \mathbb{N}} x_{i}, \bigwedge_{i \in N} y_{i}\right) .
$$

Then $L \times M$ is also a δ-frame.

Let L be a δ-frame and X a set of δ-filters in L. We will denote the power set lattice by $\mathcal{P}(X)$ in which the meet and the join are given by $\bigvee_{i \in I} A_{i}=\bigcup_{i \in I} A_{i}$ and $\bigwedge_{i \in I} A_{i}=\bigcap_{i \in I} A_{i}$ for any set I, respectively. Then $\mathcal{P}(X)$ is a δ-frame and hence $L \times \mathcal{P}(X)$ is a δ-frame. Let

$$
\mathcal{S}_{X} L=\left\{\left(x, \sum\right) \in L \times \mathcal{P}(X): \text { for any } F \in \sum, x \in F\right\} .
$$

Using this notation, the dense onto δ-homomorphism $s: \mathcal{S}_{X} L \longrightarrow L$ given by $\left(x, \sum\right) \longmapsto x$ is called the simple extension of L with respect to $X([12])$.

Lemma 2.2. Let L be a δ-frame, X a set of δ-filters on L, and s : $\mathcal{S}_{X} L \rightarrow L$ a simple extension of L with respect to X. Then for any countable subset $\left\{x_{i}: i \in \mathbb{N}\right\}$ of L,

$$
\sum_{\wedge_{i \in \mathbb{N}} x_{i}}=\bigcap_{i \in \mathbb{N}} \sum_{x_{i}}
$$

Proof. Since F is a δ-filter on L,

$$
\begin{aligned}
F \in \sum_{i \in \mathbb{N}} x_{i} & \Longleftrightarrow \bigwedge_{i \in \mathbb{N}} x_{i} \in F \\
& \Longleftrightarrow x_{i} \in F \text { for all } i \in \mathbb{N} \\
& \Longleftrightarrow F \in \sum_{x_{i}} \text { for all } i \in \mathbb{N} \\
& \Longleftrightarrow F \in \bigcap_{i \in \mathbb{N}} \sum_{x_{i}}
\end{aligned}
$$

Theorem 2.3. Let L be a strong δ-frame, X a set of δ-filters on L, and $s: \mathcal{S}_{X} L \rightarrow L$ a simple extension of L with respect to X. Let $\mathcal{B}=\left\{\left(x, \sum_{x}\right): x \in L\right\}$. Then we have :
(1) $\mathcal{B}=s_{*}(L)$.
(2) \mathcal{B} is closed under countable meets.
(3) The set $\mathcal{T}_{X} L=\left\{\bigvee\left\{\left(x, \sum_{x}\right): x \in A\right\}: A \subseteq L\right\}$ is a sub- δ frame of $S_{X} L$, which is generated by \mathcal{B}.
(4) If $t: \mathcal{T}_{X} L \longrightarrow L$ is defined by $t\left(\bigvee\left\{\left(x, \sum_{x}\right): x \in A\right\}\right)=$ $\bigvee\{x: x \in A\}$ for any $\bigvee\left\{\left(x, \sum_{x}\right): x \in A\right\} \in \mathcal{T}_{X} L$, then t is a dense onto δ-homomorphism.

Proof. (1) By the definition of $s_{*}: L \rightarrow \mathcal{S}_{X} L$, it is trivial.
(2) For any countable subset $\left\{\left(x_{i}, \sum_{x_{i}}\right): i \in \mathbb{N}\right\}$ of \mathcal{B}, by Lemma 2.2,

$$
\bigwedge_{i \in \mathbb{N}}\left(x_{i}, \sum_{x_{i}}\right)=\left(\bigwedge_{i \in \mathbb{N}} x_{i}, \bigcap_{i \in \mathbb{N}} \sum_{x_{i}}\right)=\left(\bigwedge_{i \in \mathbb{N}} x_{i}, \sum_{\bigwedge_{i \in \mathbb{N}} x_{i}}\right) \in \mathcal{B}
$$

(3) Since $\mathcal{T}_{X} L$ is a subframe of $\mathcal{S}_{X} L$, it is enough to show that for any countable subset $\left\{\left(y_{i}, \Lambda_{i}\right): i \in \mathbb{N}\right\}$ of $\mathcal{T}_{X} L, \bigwedge_{i \in \mathbb{N}}\left(y_{i}, \Lambda_{i}\right) \in \mathcal{T}_{X} L$. Take any countable subset $\left\{\left(y_{i}, \Lambda_{i}\right): i \in \mathbb{N}\right\}$ of $\mathcal{T}_{X} L$. Then there is a subset A_{i} of L such that $\left(y_{i}, \Lambda_{i}\right)=\bigvee_{x \in A_{i}}\left(x, \sum_{x}\right)$ for each $i \in \mathbb{N}$. Thus we have

$$
\begin{aligned}
\bigwedge_{i \in \mathbb{N}}\left(y_{i}, \Lambda_{i}\right) & =\bigwedge_{i \in \mathbb{N}}\left(\bigvee_{x \in A_{i}}\left(x, \sum_{x}\right)\right) \\
& =\bigwedge_{i \in \mathbb{N}}\left(\bigvee_{x \in A_{i}} x, \bigcup_{x \in A_{i}} \sum_{x}\right) \\
& =\bigwedge_{i \in \mathbb{N}}\left(\bigvee A_{i}, \sum_{A_{i}}\right) \\
& =\left(\bigwedge_{i \in \mathbb{N}}\left(\bigvee A_{i}\right), \bigcap_{i \in \mathbb{N}} \sum_{A_{i}}\right) .
\end{aligned}
$$

Since L is a strong δ-frame,

$$
\bigwedge_{i \in \mathbb{N}}\left(\bigvee A_{i}\right)=\bigvee_{f \in \prod_{i \in \mathbb{N}}}^{A_{i}}\left(\bigwedge_{i \in \mathbb{N}} f(i)\right)
$$

On the other hand,

$$
\begin{aligned}
\bigcap_{i \in \mathbb{N}} \sum_{A_{i}} & =\bigcap_{i \in \mathbb{N}}\left(\bigcup_{x \in A_{i}} \sum_{x}\right) \\
& =\bigcup_{f \in \prod_{i \in \mathbb{N}} A_{i}}\left(\bigcap_{i \in \mathbb{N}} \sum_{f(i)}\right) \\
& =\bigcup_{f \in \prod_{i \in \mathbb{N}} A_{i}}\left(\sum_{i \in \mathbb{N}} \bigwedge_{i(i)}\right) .
\end{aligned}
$$

Collecting these, we have

$$
\begin{aligned}
& \bigwedge_{i \in \mathbb{N}}\left(y_{i}, \Lambda_{i}\right)=\left(\bigvee _ { f \in \prod _ { i \in \mathbb { N } } } \left(\bigwedge_{i}\right.\right. \\
&\left.=\bigwedge_{i \in \mathbb{N}} f(i)\right), \bigcup_{f \in \prod_{i \in \mathbb{N}} A_{i}}\left(\sum_{i \in \mathbb{N}}\left(\bigwedge_{i \in \mathbb{N}} f(i)\right)\right) \\
&\left(\bigwedge_{i \in \mathbb{N}} f(i), \sum_{i \in \mathbb{N}} f(i)\right) \in \mathcal{T}_{X} L .
\end{aligned}
$$

Thus $\mathcal{T}_{X} L$ is a sub- δ-frame of $\mathcal{S}_{X} L$.
(4) Since s is a dense onto δ-homomorphism and $\mathcal{T}_{X} L$ is a sub- δ frame of $\mathcal{S}_{X} L$, it is immediate.

The following definition is derived from Theorem 2.3.
Definition 2.4. The dense onto δ-homomorphism $t: \mathcal{T}_{X} L \longrightarrow L$ is called a strict extension of L with respect to X.

It is easily shown that a strict extension t in the above definition has a right adjoint t_{*}, where $t_{*}: L \rightarrow \mathcal{T}_{X} L$ is given by $t_{*}(x)=\left(x, \sum_{x}\right)$.

Remark 2.5. Let L be a strong δ-frame, X a set of δ-filters on L and $s: \mathcal{S}_{X} L \rightarrow L$ the simple extension of L with respect to X. Then for the strict extension $t: \mathcal{T}_{X} L \longrightarrow L$ with $t \dashv t_{*}$ and $x \in L$, $\left(x, \sum_{x}\right)^{*}=\left(x^{*}, \sum_{x^{*}}\right)$.

We recall that for $(a, A),(b, B) \in L \times \mathcal{P}(X),(a, A) \prec(b, B)$ if there is $(c, C) \in L \times \mathcal{P}(X)$ with $(a, A) \wedge(c, C)=(0, \emptyset)$ and $(c, C) \vee(b, B)=(e, X)$. Equivalently, $(a, A) \prec(b, B)$ iff $(a, A)^{*} \vee$ $(b, B)=(e, X)$, where $(a, A)^{*}$ is the pseudo complement of (a, A). In fact,

$$
(a, A)^{*}=\left(a^{*}, A^{c}\right) .
$$

Theorem 2.6. Let L be a strong δ-frame and $X=\{F: F$ is a δ-filter on L and $a \prec b$ implies $a^{*} \in F$ or $\left.b \in F\right\}$. Then we have :
(1) $a \prec b$ implies $\left(a, \sum_{a}\right) \prec\left(b, \sum_{b}\right)$ in $\mathcal{T}_{X} L$.
(2) If L is a regular, then $\mathcal{T}_{X} L$ is a regular δ-frame.

Proof. (1) Let $a \prec b$. Then by Remark 2.5, $\left(a, \sum_{a}\right)^{*} \vee\left(b, \sum_{b}\right)=$ $\left(a^{*} \vee b, \sum_{a^{*}} \cup \sum_{b}\right)$. To show that $X=\sum_{a^{*}} \cup \sum_{b}$, take any $F \in X$. Then $a^{*} \in F$ or $b \in F$; hence $F \in \sum_{a^{*}}$ or $F \in \sum_{b}$. Hence $F \in$ $\sum_{a^{*}} \cup \sum_{b}$. Thus $X=\sum_{a^{*}} \cup \sum_{b}$. Therefore, $\left(a, \sum_{a}\right) \prec\left(b, \sum_{b}\right)$.
(2) Take any $\left(a, \sum_{a}\right) \in \mathcal{T}_{X} L=[\mathcal{B}]$. Since L is regular, $a=\bigvee\{x \in$ $L: x \prec a\}$. Then $\sum_{a}=\bigcup\left\{\sum_{x}: x \prec a\right\}$. Hence by (1),

$$
\begin{aligned}
\left(a, \sum_{a}\right) & =\left(\bigvee\{x \in L: x \prec a\}, \bigcup\left\{\sum_{x}: x \prec a\right\}\right) \\
& =\bigvee\left\{\left(x, \sum_{x}\right): x \prec a\right\} \\
& \leq \bigvee\left\{\left(x, \sum_{x}\right):\left(x, \sum_{x}\right) \prec\left(a, \sum_{a}\right)\right\} \\
& \leq\left(a, \sum_{a}\right) .
\end{aligned}
$$

Thus $\mathcal{T}_{X} L$ is regular.

Theorem 2.7. Let L be a strong δ-frame and $X=\{F: F$ is a δ-filter on L and $a \prec b$ implies $a^{*} \in F$ or $\left.b \in F\right\}$. Then $a \prec b$ in L iff $\sum_{a} \prec \sum_{b}$ in $\mathcal{T}_{X} L$.

Proof. Let $a \prec b$. Since $\sum_{a} \bigvee \sum_{b} \subset \sum_{a^{*} \vee b}$, we will show that $\sum_{a^{*} \vee b} \subset \sum_{a^{*}} \bigvee \sum_{b}$. If $F \in \sum_{a^{*} \vee b} \subset X$, then $a^{*} \in F$ or $b \in F$. Thus $F \in \sum_{a^{*}} \bigvee \sum_{b}$. Hence $X=\sum_{e}=\sum_{a^{*} \vee b}=\sum_{a^{*}} \bigvee \sum_{b}=$ $\sum_{a}^{*} \vee \sum_{b}$; and hence $\sum_{a} \prec \sum_{b}$. The other hands, $\sum_{a} \prec \sum_{b}$ implies $X=\sum_{a}^{*} \bigvee \sum_{b}=\sum_{a^{*}} \bigvee \sum_{b} \subset \sum_{a^{*} \vee b}$ and hence $\sum_{a^{*} \vee b}=X$. Then $a^{*} \vee b=e$. Thus $a \prec b$.

References

1. B. Banaschewski, Frames and Compactifications, In Extension Theory of Topological Structures and its Appl., Deutscher Verlag der Wissenschaften, Berlin (1969), 29-33.
2. J. Bénabou, Treillis Locaux et Paratopologies, Séminaire Ehresmann (Topologie et Géométrie Différentielle), lre année (1957-8), exposé 2 (1958).
3. E. A. Choi, On δ-Frames and Strong δ-Frames, J. of the Chungcheong Math. Soc. 11 (1998), 27-34.
4. C. H. Dowker and D. Papert, Sums in the Category of Frames, Houston J. Math. 3 (1977), 7-15.
5. C. Ehresmann, Cattungen von Lokalen Structuren, Jber. Deutsch. Math. Verein 60 (1957), 59-77.
6. A. Heyting, Die formalen Regeln der intuitionistischen Logik, Sitzungsberichte der Preussichen Akademie der Wissenschaften, Phys. Mathem. Klasse (1930), 42-56.
7. S. S. Hong, Convergence in Frames, Kyungpook Math. J. 35 (1995), 85-91.
8. B. S. In, A Study on σ-Ideals and σ-Frames, Ph.D., Korea university (1987), 22-24.
9. J. R. Isbell, Atomless Parts of Spaces, Math. Scand. 31 (1972), 5-32.
10. P. T. Johnstone, Stone Space, Cambridge University Press, 1982.
11. Jorge Picado, Join-Countinuous Frames, Priestley's Duality and Biframes, Applied Categorical Structures 2 (1994), 331-350.
12. S. O. Lee and E. A. Choi, On simple extensions of δ-frames, J. Chungcheong Math. Soc. 12 (1999), 43-52.
13. S. O. Lee, S. J. Lee and E. A. Choi, On δ-frames, J. of the Chungcheong Math. Soc. 10 (1997), 43-56.
14. H. Wallman, Lattices and Topological Spaces, Ann. Math. (2) 39 (1938), 112-126.
15. J. Wick Pelletier, Von Neumann Algebras and Hilbert Quantales, Applied Categorical Structures 5 (1997), 249-264.

Department of Mathematics
Chungbuk National University
Cheongju, 361-763, Korea.

[^0]: Received by the editors on May 2, 2000.
 1991 Mathematics Subject Classifications: 06D 54A99 54D99.
 Key words and phrases: complete lattice, strong δ-frame, δ-filter.

