ON STRICT EXTENSIONS OF STRONG δ -frames

Seung On Lee and Eun Ai Choi

ABSTRACT. In this paper, we introduce strict extensions on a δ -frame, and show that if L is a regular strong δ -frame, then $\mathcal{T}_X L$ is a regular δ -frame.

1. Introduction

The study of topological properties from a lattice-theoretic viewpoint was initiated by H. Wallman [14]. In particular, C. Ehresmann [5] and J. Bénabou [2] took the decisive step of regarding local lattices as generalized topological spaces in their own right. Such a local lattice is called a frame, a term introduced by C. H. Dowker and studied by D. Papert [4], J. R. Isbell [9], B. Banaschewski [1], P. T. Johnstone [10], Jorge Picado [11], and J. Wick Pelletier [15].

We note that continuous lattices and frames are characterized by certain distributive laws. We also note that a frame L is a complete lattice but in the theory of frames, we use only finite meets. Considering countable meets, we will get more properties of frames.

In this paper, a partially ordered set is also called a poset. If \leq is a partial order on L, the smallest (largest, resp.) element of L, if it exists, is the element 0 (e, resp.) such that $0 \leq x$ ($x \leq e$, resp.) for each $x \in L$. Smallest (largest, resp.) elements are unique when they exist, by antisymmetry. We call 0 (e, resp.) the bottom (top, resp.) element of L. From now on, we denote a poset (L, \leq) simply as L.

Received by the editors on May 2, 2000.

¹⁹⁹¹ Mathematics Subject Classifications: 06D 54A99 54D99.

Key words and phrases: complete lattice, strong δ -frame, δ -filter.

DEFINITION 1.1. A map $f: S \to T$ between two posets S and T is called an *isotone* if for $a \leq b$ in S, $f(a) \leq f(b)$ in T.

DEFINITION 1.2. Let S and T be posets and let $f : S \to T$ and $g : T \to S$ be isotones. Then (f, g) is said to be an *adjunction* or a *Galois connection* between S and T provided for any $x \in S$ and $y \in T$, $f(x) \leq y$ iff $x \leq g(y)$. In this case, f is said to be a *left adjoint* of g and g a *right adjoint* of f, and we write $f \dashv g$.

Let L be a poset. We say that L is a *complete lattice* if every subset A of L has the least upper bound and the greatest lower bound.

Every left adjoint preserves joins and every right adjoint preserves meets when they exist. Let S be a complete lattice and T a poset. Then $f: S \to T$ is a map which preserves joins iff f is an isotone and f has a right adjoint. Dually, if S is a complete lattice and T is a poset, then a map $f: S \to T$ has a left adjoint and f is an isotone iff f preserves meets.

DEFINITION 1.3. ([6]) A complete lattice L is called a frame (or complete Heyting algebra) if for any $a \in L$ and $S \subseteq L$,

$$a \land (\bigvee S) = \bigvee \{ a \land s : s \in S \}.$$

DEFINITION 1.4. Let L be a frame. Then we say :

(1) For $A, B \subseteq L, A$ refines B if for any $a \in A$, there is $b \in B$ with $a \leq b$, which is denoted by $A \leq B$.

(2) For $a, b \in L$, a is well inside b if there is $c \in L$ with $a \wedge c = 0$ and $c \vee b = e$. In case, we write $a \prec b$. Equivalently, $a \prec b$ iff $a^* \vee b = e$, where $a^* = \bigvee \{x \in L : a \wedge x = 0\}$, i.e., a^* is the pseudo complement of a.

(3) For $A \subseteq L$, A is a cover of L if $\bigvee A = e$. The set of all covers of L is denoted by Cov(L) and

 $CCov(L) = \{ A : \text{ there is a countable cover } B \text{ with } B \leq A \}.$

(4) L is regular if for any $a \in L$, $a = \bigvee \{x \in L : x \prec a\}$.

(5) For $x, y \in L$, we define $x \to y = \bigvee \{z \in L : x \land z \leq y\}$, so that $x \land z \leq y$ iff $z \leq x \to y$.

DEFINITION 1.5. ([3]) A frame L is called a δ -frame if for any $a \in L$ and countable subset K of L,

$$a \lor (\bigwedge K) = \bigwedge \{a \lor k : k \in K\}.$$

DEFINITION 1.6. ([3]) A frame L is called a strong δ -frame if for any countable family $(A_k)_{k \in \mathbb{N}}$ of subsets of L,

$$\bigwedge_{k \in \mathbb{N}} (\bigvee A_k) = \bigvee_{f \in \prod_{k \in \mathbb{N}} A_k} (\bigwedge_{n \in \mathbb{N}} f(n)),$$

where $f = (f(n))_{n \in \mathbb{N}}$.

Every strong δ -frame is a δ -frame.

DEFINITION 1.7. ([13]) Let L and M be frames (δ -frames, resp.). Then a map $f : L \longrightarrow M$ is called a *homomorphism* (δ -homomorphism, resp.) if f preserves a finite meets and arbitrary joins(countable meets and arbitrary joins, resp.).

DEFINITION 1.8. A frame homomorphism $f: L \longrightarrow M$ is said to be :

- (1) open if for $x, y \in L, f(x \to y) = f(x) \to f(y).$
- (2) dense if f(x) = 0 implies x = 0.

DEFINITION 1.9. ([8]) Let L be a quasi ordered set and $F \subseteq L$. Then we say that F is a *filter* (δ -*filter*, resp.) on L if F satisfies the following :

(1) F does not contain 0.

(2) $F = \uparrow F = \{x \in L : a \leq x \text{ for some } a \in F\}.$

(3) For any finite (countable, resp.) subset K of F, there is $a \in F$ such that for all $x \in K$, $a \leq x$.

PROPOSITION 1.10. Let L be a strong δ -frame. Then Cov(L) and CCov(L) are δ -filters.

Proof. It is trivial by Proposition 2.7 in [3].

For a set X of filters on a frame L, let $\mathcal{P}(X)$ denote the power set lattice of X and $L \times \mathcal{P}(X)$ the product frame of L and $\mathcal{P}(X)$. Then $\{(x, \sum) \in L \times \mathcal{P}(X) : \text{ for any } F \in \sum, x \in F\}$ is a subframe of $L \times \mathcal{P}(X)$, which is denoted by $\mathcal{S}_X L$. And the restriction $s : \mathcal{S}_X L \to L$ of the first projection $Pr_1 : L \times \mathcal{P}(X) \to L$ is an onto, dense and open homomorphism.

For any $x \in L$, let $\sum_x = \{F \in X : x \in F\}$. Then the right adjoint s_* of s is given by $s_*(x) = (x, \sum_x)$ for any $x \in L$. Since s_* preserves meets, $s_*(L)$ is closed under finite meets ; and hence the subframe $\mathcal{T}_X L$ of $\mathcal{S}_X L$ generated by $s_*(L)$ is given by $\mathcal{T}_X L = \{ \bigvee \{(x, \sum_x) : x \in A\} : A \subseteq L \}$. Clearly the restriction $t : \mathcal{T}_X L \to L$ of s is an onto dense homomorphism ([7]).

2. Strict Extensions of a δ -Frame

DEFINITION 2.1. Let L be a δ -frame and $M \subseteq L$. Then M is said to be a *sub-\delta-frame* of L if M is closed under countable meets and arbitrary joins in L.

If M is a sub- δ -frame of a δ -frame L, then M is also a δ -frame.

Let L and M be δ -frames. For any subset $\{(x_{\alpha}, y_{\alpha}) : \alpha \in \Lambda\}$ of $L \times M$ and $\{(x_i, y_i) : i \in \mathbb{N}\} \in Count(L \times M)$, we define

$$\bigvee_{\alpha \in \Lambda} (x_{\alpha}, y_{\alpha}) = (\bigvee_{\alpha \in \Lambda} x_{\alpha}, \bigvee_{\alpha \in \Lambda} y_{\alpha}) \text{ and } \bigwedge_{i \in \mathbb{N}} (x_i, y_i) = (\bigwedge_{i \in \mathbb{N}} x_i, \bigwedge_{i \in N} y_i).$$

Then $L \times M$ is also a δ -frame.

Let L be a δ -frame and X a set of δ -filters in L. We will denote the power set lattice by $\mathcal{P}(X)$ in which the meet and the join are given by $\bigvee_{i \in I} A_i = \bigcup_{i \in I} A_i$ and $\bigwedge_{i \in I} A_i = \bigcap_{i \in I} A_i$ for any set I, respectively. Then $\mathcal{P}(X)$ is a δ -frame and hence $L \times \mathcal{P}(X)$ is a δ -frame. Let

$$\mathcal{S}_X L = \{ (x, \ \sum) \in L \times \mathcal{P}(X) : \text{ for any } F \in \sum, \ x \in F \}.$$

Using this notation, the dense onto δ -homomorphism $s : S_X L \longrightarrow L$ given by $(x, \Sigma) \longmapsto x$ is called the *simple extension* of L with respect to X([12]).

LEMMA 2.2. Let L be a δ -frame, X a set of δ -filters on L, and s: $S_X L \to L$ a simple extension of L with respect to X. Then for any countable subset $\{x_i : i \in \mathbb{N}\}$ of L,

$$\sum_{\substack{\Lambda \\ i \in \mathbb{N}}} x_i = \bigcap_{i \in \mathbb{N}} \sum_{x_i} .$$

Proof. Since F is a δ -filter on L,

$$F \in \sum_{i \in \mathbb{N}} x_i \iff \bigwedge_{i \in \mathbb{N}} x_i \in F$$
$$\iff x_i \in F \text{ for all } i \in \mathbb{N}$$
$$\iff F \in \sum_{x_i} \text{ for all } i \in \mathbb{N}$$
$$\iff F \in \bigcap_{i \in \mathbb{N}} \sum_{x_i}.$$

		ı

THEOREM 2.3. Let L be a strong δ -frame, X a set of δ -filters on L, and $s : S_X L \to L$ a simple extension of L with respect to X. Let $\mathcal{B} = \{(x, \sum_x) : x \in L\}$. Then we have :

- (1) $\mathcal{B} = s_*(L).$
- (2) \mathcal{B} is closed under countable meets.
- (3) The set $\mathcal{T}_X L = \{ \bigvee \{ (x, \sum_x) : x \in A \} : A \subseteq L \}$ is a sub- δ -frame of $S_X L$, which is generated by \mathcal{B} .
- (4) If $t : \mathcal{T}_X L \longrightarrow L$ is defined by $t(\bigvee\{(x, \sum_x) : x \in A\}) = \bigvee\{x : x \in A\}$ for any $\bigvee\{(x, \sum_x) : x \in A\} \in \mathcal{T}_X L$, then t is a dense onto δ -homomorphism.

Proof. (1) By the definition of $s_* : L \to \mathcal{S}_X L$, it is trivial.

(2) For any countable subset $\{(x_i, \sum_{x_i}) : i \in \mathbb{N}\}$ of \mathcal{B} , by Lemma 2.2,

$$\bigwedge_{i\in\mathbb{N}} (x_i, \ \sum_{x_i}) = (\bigwedge_{i\in\mathbb{N}} x_i, \ \bigcap_{i\in\mathbb{N}} \sum_{x_i}) = (\bigwedge_{i\in\mathbb{N}} x_i, \ \sum_{i\in\mathbb{N}} x_i) \in \mathcal{B}.$$

(3) Since $\mathcal{T}_X L$ is a subframe of $\mathcal{S}_X L$, it is enough to show that for any countable subset $\{(y_i, \Lambda_i) : i \in \mathbb{N}\}$ of $\mathcal{T}_X L$, $\bigwedge_{i \in \mathbb{N}} (y_i, \Lambda_i) \in \mathcal{T}_X L$. Take any countable subset $\{(y_i, \Lambda_i) : i \in \mathbb{N}\}$ of $\mathcal{T}_X L$. Then there is a subset A_i of L such that $(y_i, \Lambda_i) = \bigvee_{x \in A_i} (x, \sum_x)$ for each $i \in \mathbb{N}$. Thus we have

$$\begin{split} \bigwedge_{i \in \mathbb{N}} (y_i, \ \Lambda_i) &= \bigwedge_{i \in \mathbb{N}} (\bigvee_{x \in A_i} (x, \ \sum_x)) \\ &= \bigwedge_{i \in \mathbb{N}} (\bigvee_{x \in A_i} x, \ \bigcup_{x \in A_i} \sum_x) \\ &= \bigwedge_{i \in \mathbb{N}} (\bigvee A_i, \ \sum_{A_i}) \\ &= (\bigwedge_{i \in \mathbb{N}} (\bigvee A_i), \ \bigcap_{i \in \mathbb{N}} \sum_{A_i}). \end{split}$$

Since L is a strong δ -frame,

$$\bigwedge_{i\in\mathbb{N}}(\bigvee A_i) = \bigvee_{f\in\prod\limits_{i\in\mathbb{N}}A_i}(\bigwedge_{i\in\mathbb{N}}f(i)).$$

On the other hand,

$$\bigcap_{i \in \mathbb{N}} \sum_{A_i} = \bigcap_{i \in \mathbb{N}} (\bigcup_{x \in A_i} \sum_{x})$$
$$= \bigcup_{f \in \prod_{i \in \mathbb{N}} A_i} (\bigcap_{i \in \mathbb{N}} \sum_{f(i)})$$
$$= \bigcup_{f \in \prod_{i \in \mathbb{N}} A_i} (\sum_{i \in \mathbb{N}} f(i)).$$

Collecting these, we have

$$\begin{split} \bigwedge_{i \in \mathbb{N}} (y_i, \ \Lambda_i) &= (\bigvee_{f \in \prod_{i \in \mathbb{N}} A_i} (\bigwedge_{i \in \mathbb{N}} f(i)), \ \bigcup_{f \in \prod_{i \in \mathbb{N}} A_i} (\sum_{i \in \mathbb{N}} f(i))) \\ &= \bigvee_{f \in \prod_{i \in \mathbb{N}} A_i} (\bigwedge_{i \in \mathbb{N}} f(i), \ \sum_{i \in \mathbb{N}} f(i)) \in \mathcal{T}_X L. \end{split}$$

Thus $\mathcal{T}_X L$ is a sub- δ -frame of $\mathcal{S}_X L$.

(4) Since s is a dense onto δ -homomorphism and $\mathcal{T}_X L$ is a sub- δ -frame of $\mathcal{S}_X L$, it is immediate.

The following definition is derived from Theorem 2.3.

DEFINITION 2.4. The dense onto δ -homomorphism $t : \mathcal{T}_X L \longrightarrow L$ is called a *strict extension* of L with respect to X.

It is easily shown that a strict extension t in the above definition has a right adjoint t_* , where $t_* : L \to \mathcal{T}_X L$ is given by $t_*(x) = (x, \sum_x)$. REMARK 2.5. Let L be a strong δ -frame, X a set of δ -filters on Land $s : S_X L \to L$ the simple extension of L with respect to X. Then for the strict extension $t : \mathcal{T}_X L \longrightarrow L$ with $t \dashv t_*$ and $x \in L$, $(x, \sum_x)^* = (x^*, \sum_{x^*}).$

We recall that for (a, A), $(b, B) \in L \times \mathcal{P}(X)$, $(a, A) \prec (b, B)$ if there is $(c, C) \in L \times \mathcal{P}(X)$ with $(a, A) \wedge (c, C) = (0, \emptyset)$ and $(c, C) \vee (b, B) = (e, X)$. Equivalently, $(a, A) \prec (b, B)$ iff $(a, A)^* \vee$ (b, B) = (e, X), where $(a, A)^*$ is the pseudo complement of (a, A). In fact,

$$(a, A)^* = (a^*, A^c).$$

THEOREM 2.6. Let L be a strong δ -frame and $X = \{F : F \text{ is a } \delta$ -filter on L and $a \prec b$ implies $a^* \in F$ or $b \in F\}$. Then we have :

(1) $a \prec b$ implies $(a, \sum_a) \prec (b, \sum_b)$ in $\mathcal{T}_X L$.

(2) If L is a regular, then $\mathcal{T}_X L$ is a regular δ -frame.

Proof. (1) Let $a \prec b$. Then by Remark 2.5, $(a, \sum_a)^* \lor (b, \sum_b) = (a^* \lor b, \sum_{a^*} \bigcup \sum_b)$. To show that $X = \sum_{a^*} \bigcup \sum_b$, take any $F \in X$. Then $a^* \in F$ or $b \in F$; hence $F \in \sum_{a^*}$ or $F \in \sum_b$. Hence $F \in \sum_{a^*} \bigcup \sum_b$. Thus $X = \sum_{a^*} \bigcup \sum_b$. Therefore, $(a, \sum_a) \prec (b, \sum_b)$.

(2) Take any $(a, \sum_a) \in \mathcal{T}_X L = [\mathcal{B}]$. Since L is regular, $a = \bigvee \{x \in L : x \prec a\}$. Then $\sum_a = \bigcup \{\sum_x : x \prec a\}$. Hence by (1),

$$(a, \ \sum_{a}) = (\bigvee \{ x \in L : x \prec a \}, \ \bigcup \{ \sum_{x} : x \prec a \})$$
$$= \bigvee \{ (x, \ \sum_{x}) : x \prec a \}$$
$$\leq \bigvee \{ (x, \ \sum_{x}) : (x, \ \sum_{x}) \prec (a, \ \sum_{a}) \}$$
$$\leq (a, \ \sum_{a}).$$

Thus $\mathcal{T}_X L$ is regular.

THEOREM 2.7. Let L be a strong δ -frame and $X = \{F : F \text{ is a } \delta$ -filter on L and $a \prec b$ implies $a^* \in F$ or $b \in F\}$. Then $a \prec b$ in L iff $\sum_a \prec \sum_b$ in $\mathcal{T}_X L$.

Proof. Let $a \prec b$. Since $\sum_{a} \bigvee \sum_{b} \subset \sum_{a^* \lor b}$, we will show that $\sum_{a^* \lor b} \subset \sum_{a^*} \bigvee \sum_{b}$. If $F \in \sum_{a^* \lor b} \subset X$, then $a^* \in F$ or $b \in F$. Thus $F \in \sum_{a^*} \bigvee \sum_{b}$. Hence $X = \sum_{e} = \sum_{a^* \lor b} = \sum_{a^*} \bigvee \sum_{b} = \sum_{a^*} \bigvee \sum_{b}$; and hence $\sum_{a} \prec \sum_{b}$. The other hands, $\sum_{a} \prec \sum_{b}$ implies $X = \sum_{a}^{*} \bigvee \sum_{b} = \sum_{a^*} \bigvee \sum_{b} \subset \sum_{a^* \lor b}$ and hence $\sum_{a^* \lor b} = X$. Then $a^* \lor b = e$. Thus $a \prec b$.

References

- B. Banaschewski, Frames and Compactifications, In Extension Theory of Topological Structures and its Appl., Deutscher Verlag der Wissenschaften, Berlin (1969), 29-33.
- J. Bénabou, Treillis Locaux et Paratopologies, Séminaire Ehresmann (Topologie et Géométrie Différentielle), lre année (1957-8), exposé 2 (1958).
- E. A. Choi, On δ-Frames and Strong δ-Frames, J. of the Chungcheong Math. Soc. 11 (1998), 27-34.
- C. H. Dowker and D. Papert, Sums in the Category of Frames, Houston J. Math. 3 (1977), 7-15.
- C. Ehresmann, Cattungen von Lokalen Structuren, Jber. Deutsch. Math. Verein 60 (1957), 59-77.
- A. Heyting, Die formalen Regeln der intuitionistischen Logik, Sitzungsberichte der Preussichen Akademie der Wissenschaften, Phys. Mathem. Klasse (1930), 42-56.
- 7. S. S. Hong, Convergence in Frames, Kyungpook Math. J. 35 (1995), 85-91.
- 8. B. S. In, A Study on σ -Ideals and σ -Frames, Ph.D., Korea university (1987), 22-24.
- 9. J. R. Isbell, Atomless Parts of Spaces, Math. Scand. **31** (1972), 5-32.
- 10. P. T. Johnstone, Stone Space, Cambridge University Press, 1982.
- Jorge Picado, Join-Countinuous Frames, Priestley's Duality and Biframes, Applied Categorical Structures 2 (1994), 331-350.
- S. O. Lee and E. A. Choi, On simple extensions of δ-frames, J. Chungcheong Math. Soc. 12 (1999), 43-52.
- S. O. Lee, S. J. Lee and E. A. Choi, On δ-frames, J. of the Chungcheong Math. Soc. 10 (1997), 43-56.
- H. Wallman, Lattices and Topological Spaces, Ann. Math. (2) 39 (1938), 112-126.

 J. Wick Pelletier, Von Neumann Algebras and Hilbert Quantales, Applied Categorical Structures 5 (1997), 249-264.

Department of Mathematics Chungbuk National University Cheongju, 361-763, Korea.

118