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PROPERTIES OF D{WEAKLY

CONTINUOUS FUNCTIONS

Yoon-Hoe Goo

Abstract. We introduce the notion of d-weakly continuous func-

tion, and investigate some of their properties.

1. Introduction

Continuity is of fundamental importance in topology. In this pa-

per, we introduce the notion of d-weakly continuous function which

is more general than that of the continuous function, and study some

properties of d-weakly continuous functions.

2. D-weakly continuous

The notation cl(A) denote the closure of the subset A in a topolog-

ical space. Throughout this paper, the symbols X;Y and Z denote

topological spaces where no separation axioms are assumed unless

explicitly stated.

Definition 2.1. Let X be a space and let A be a subset of X. The

w-closure clw(A) of A is de�ned by

clw(A) = fx 2 Xj A \ cl(U) 6= � for all neighborhoods U of x g:
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Definition 2.2. A function f : X ! Y is d-weakly continuous at a

point x in X if for each neighborhood of f(x), there is a neighborhood

U of x such that f(U) � clw(A). A function f : X ! Y is d-weakly

continuous if it is d-weakly continuous at each point of X.

A continuous function implies d-weakly continuous function, but as

the following example shows, the converse does not necessarily hold.

Example 2.3. [5] Let X be the set of all real numbers with the

co�nite topology and let Y = f0; 1; 2g with the topology f�; f0g; f2g;

f0; 2g; Y g. De�ne a function f : X ! Y by f(x) = 0 if x is rational

and f(x) = 1 if x is irrational. Then f is d-weakly continuous but

not continuous.

Whenever the range of a function is a regular space, the following

theorem holds.

Theorem 2.4. If a function f : X ! Y is d-weakly continuous

and Y is regular, then f is continuous.

Proof. Let x 2 X and let G be any neighborhood of f(x). Then

since Y is regular, there is a neighborhood V of f(x) such that

clw(V ) � G. Since f is d-weakly continuous at x, there is a neighbor-

hood U of x such that f(U) � clw(V ). Therefore we have f(U) � G.

Hence f is continuous. �

D-weakly continuous function can be characterized by the inverse

image of open sets under f as follows.

Theorem 2.5. A function f : X ! Y is d-weakly continuous if

and only if for any open set V of Y , f�1(V ) � f�1(clw(V ))o.

Proof. Suppose that f is d-weakly continuous. Let V be any

open set in Y and let x 2 f�1(V ). Then f(x) 2 V and so V is

a neighborhood of f(x). Since f is d-weakly continuous at x, there



PROPERTIES OF D{WEAKLY CONTINUOUS FUNCTIONS 97

is a neighborhood U of x such that f(U) � clw(V ). Since U �

f�1(f(U)) � f�1(clw(V )) and U is open, we have U � f�1(clw(V ))o.

Thus x 2 f�1(clw(V ))o and so we obtain f�1(V ) � f�1(clw(V ))o.

Conversely, suppose that for any open set V of Y , f�1(V ) �

f�1(clw(V ))o. Let x 2 X and let G be any neighborhood of f(x).

Then since G is open in Y , by hypothesis we have

f�1(G) � f�1(clw(G))
o:

Let U = f�1(clw(G))
o. Since x 2 f�1(G); U is a neighborhood of

x. Since f(U) = f(f�1(clw(G))
o) � f(f�1(clw(G))) � clw(G); f is

d-weakly continuous at x. Hence the proof is complete. �

Theorem 2.6. If f : X ! Y is continuous and g : Y ! Z is

d-weakly continuous, then g � f : X ! Z is d-weakly continuous.

Proof. Let x 2 X and let G be any neighborhood of g(f(x)). Then

since g is d-weakly continuous at f(x), there is a neighborhood V

of f(x) such that g(V ) � clw(G). Also, since f is continuous at

x, there exists a neighborhood U of x such that f(U) � V . Since

g(f(U)) � g(V ) � clw(G), g � f is d-weakly continuous at x. This

completes the proof. �

We know the restriction of a continuous function on a subset is

continuous. Also, this fact holds for d-weakly continuous function.

Theorem 2.7. If f : X ! Y is d-weakly continuous and A is a

subspace of X, then f jA : A! Y is d-weakly continuous.

Proof. Let x 2 A and let G be any neighborhood of f jA(x) = f(x).

Then since f is d-weakly continuous at x, there is a neighborhood V

of x in X such that f(V ) � clw(G). Let U = V \ A. Then U is a

neighborhood of x in A. Since f jA(U) = f(U) � f(V ) � clw(G); f jA
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is d-weakly continuous at x. Hence the proof of the theorem is com-

plete. �

We introduce the theorem which will use to prove the following

theorem.

Theorem 2.8. [4] Let Y be an open or dense subspace of X and

let A be a subset of Y . Then w-closure clwY (A) of A in Y equals

clw(A) \ Y .

Theorem 2.9. If f : X ! Y is d-weakly continuous and Z is a

space having Y as an open subspace, then f : X ! Z is d-weakly

continuous.

Proof. Let x 2 X and let G be any neighborhood of f(x) in Z.

Then V = G \ Y is a neighborhood of f(x) in Y . Since f : X ! Y is

d-weakly continuous at x, there is a neighborhood U of x such that

f(U) � clwY (V ). Since Y is open in Z, by Theorem 2.8 we have

clwY (V ) = clZ(V ) \ Y . Thus f(U) � clwZ (V ) \ Y � clwZ (V ) �

clwZ (G) and so f : X ! Z is d-weakly continuous at x. Hence the

proof is complete. �

Theorem 2.10. Let fU�j� 2 Ig be an open covering of X and let

f be a function from X to Y . If f jU� : U� ! Y is d-weakly continuous

for any � 2 I, then f is d-weakly continuous.

Proof. Let x 2 X. Then since fU�j� 2 Ig is an open covering of

X, there exists � 2 I such that x 2 U�. Let G be any neighborhood

of f(x). Then since f jU� : U� ! Y is d-weakly continuous at x, there

is a neighborhood U of x in U� such that f jU� (U) = f(U) � clw(G).

Since U� is open, U is open in X. Hence f is d-weakly continuous at

x. This completes the proof of the theorem. �
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Theorem 2.11. Let X = A [ B, where A and B are disjoint

closed subspaces in X. If f jA : A! Y and f jB : B ! Y are d-weakly

continuous, then f : X ! Y is d-weakly continuous.

Proof. Let x 2 X. Since A and B are disjoint, the proof is di-

vided into two the cases x 2 A and x 2 B. First, let x 2 A and

let G be any neighborhood of f(x) = f jA(x). Then since f jA is d-

weakly continuous, there exists a neighborhood V of x in A such that

f jA(V ) = f(V ) � clw(G). Since A is a subspace of X, there is a

neighborhood U of x in X such that V = U \ A. Since B is closed,

U � B is a neighborhood of x in X. Since U � B � X � B = A,

we have U � B = (U � B) \ A � U \ A = V . Thus we obtain

f(U � B) = f jA(U � B) � f(V ) � clw(G). Therefore f is d-weakly

continuous at x. Finally, let x 2 B. Then in the same manner when

x 2 A; f is d-weakly continuous at x. Hence the proof is complete. �

Theorem 2.12. Let f : X ! Y and g : X ! Z be d-weakly

continuous and let h = f � g : X ! Y � Z be a function de�ned by

h(x) = (f(x); g(x)). Then h is d-weakly continuous.

Proof. Let x 2 X and let G be any neighborhood of h(x) =

(f(x); g(x)) in Y � Z. Then by the de�nition of a product space,

there are neighborhoods V of f(x) in Y and W of g(x) in Z such

that V �W � G. Since f and g are d-weakly continuous at x, there

exist neighborhoods U1; U2 of x in X such that f(U1) � clw(V ) and

g(U2) � clw(W ). Let U = U1 \U2. Then U is a neighborhood of x in

X. Since

h(U) � f(U)� g(U) � f(U1)� g(U2) � clw(V )� clw(W )

� clw(V �W ) � clw(G);

h is d-weakly continuous at x. Hence the proof is complete. �
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