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ON A FUZZY BANACH SPACE

G. S. Rhie* and I. A. Hwang

Abstract. The main goal of this paper is to prove the following the-

orem ; Let (X; �1) be a fuzzy normed linear space over K and (Y; �2)

be a fuzzy Banach space over K. If �Bk�k
� ��, then (CF (X;Y ); ��)

is a fuzzy Banach space, where ��(f) = _f� ^ 1
t(�;f)

j � 2 (0; 1)g,

f 2 CF (X;Y ), Bk�k is the closed unit ball on (CF (X;Y ); k � k) and

k f k= _fP 2
��

(f(x)) j P 1
��

(x) = 1; x 2 Xg; f 2 CF (X;Y ); � 2 (0; 1):

1. Introduction

The notions of fuzzy seminorm and fuzzy norm have introduced by

Katsaras[2]. And in [5], Krishna and Sarma has shown the properties

of fuzzy norms on the set of all fuzzy continuous linear maps those de-

�ned on fuzzy normed linear space to other fuzzy normed linear space.

Rhie, Choi and Kim [7] introduced the notions of the fuzzy �-Cauchy

sequence and fuzzy completeness, and in [8], Rhie and Hwang studied

the relation between fuzzy seminorms and ordinary seminorms gener-

ated by the fuzzy seminorms.

In this paper, we show that

k f k= _fP 2
��

(f(x)) j P 1
��

(x) = 1; x 2 Xg

is a norm on the linear space of all fuzzy continuous linear maps, and

prove that this space containing several conditions is a fuzzy Banach
space.
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2. Preliminaries

In this section, we explain some basic de�nitions and results.

Let X be a nonempty set. A fuzzy set in X is an element of the

set IX of all functions from X into the unit interval I. �A denotes

the characteristic function of the set A. _ and ^ are used for the

supremum and in�mum of the family respectively, R+ = [0;1).

Definition 2.1. [3] Let X be a vector space. For � 2 I
X and t a

scalar, the fuzzy set t� is the image of � under the map g : X ! X,

g(x) = tx, that is if � 2 I
X and t 2 K, then

(t�)(x) =

8<
:

�(x=t) if t 6= 0
0 if t = 0 and x 6= 0

_f�(y) j y 2 Xg if t = 0 and x = 0:

Let � be a fuzzy set in the scalar �eld K and � a fuzzy set in a

vector space X. Let � � � be the fuzzy subset in I
K�X and the map

h : K � X ! X, h(t; x) = tx. Then we denote the image of � � �

under h by ��. That is

��(y) = h(�� �)(y) = _f(�� �)(t; x) j (t; x) 2 h
�1(y)g:

Definition 2.2. [3] � 2 I
X is said to be

1. convex if t� + (1� t)� � � for each t 2 [0; 1]

2. balanced if t� � � for each t 2 K with j t j � 1

3. absolutely convex if � is convex and balanced

4. absorbing if _ft�(x) j t > 0g = 1 for all x 2 X.

Definition 2.3. [2] A fuzzy seminorm on X is a fuzzy set � in X

which is absolutely convex and absorbing. If in addition ^f(t�)(x) j

t > 0g = 0 for x 6= 0, then � is called a fuzzy norm.

Definition 2.4. [4] If � is a fuzzy seminorm on X, then for every

� 2 (0; 1), P� : X ! R+ is de�ned by

P�(x) = ^ft > 0 j t�(x) > �g
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and for every x 2 X, P�� : X ! R+ is also de�ned by

P��(x) = _fP�(x) j � < �g:

Definition 2.5. [4] The P� in De�nition 2.4 is a seminorm on X.

Further P� is a norm on X for each � 2 (0; 1) if and only if � is a fuzzy

norm on X.

Definition 2.6. [5] A fuzzy set � 2 I
X is called a fuzzy point i�

�(z) =

�
� if z = x;

0 otherwise;

where � 2 (0; 1). We denote this fuzzy point with support x and value

� by (x; �).

3. Main results

In this section, we obtain some properties of the linear space of all

fuzzy continuous linear maps.

Definition 3.1. [7] Let � 2 (0; 1). A sequence of fuzzy points

f�n = (xn; �n)g is said to be a fuzzy �-Cauchy sequence in a fuzzy

normed linear space (X; �) if for each neighborhood N of 0 with N(0) >

�, there exists a positive integer M such that n;m � M implies �n �

�m = (xn � xm; �n ^ �m) � N . A fuzzy normed linear space (X; �)

is said to be fuzzy �-complete if every fuzzy �-Cauchy sequence f�ng

converges to a fuzzy point � = (x; �) (refer to De�nition 2.13 of [5]).

(X; �) is said to be fuzzy complete if it is fuzzy �-complete for every

� 2 (0; 1). A fuzzy complete fuzzy normed linear space is said to be a

fuzzy Banach space.

Theorem 3.2. [4] The P�� in De�nition 2.4 is a seminorm on X.

Further P�� is a norm on X for each � 2 (0; 1) if and only if � is a

fuzzy norm on X.

Lemma 3.3. For each � in (0; 1), if f is continuous on (X;P 1
�
) to

(Y; P 2
�
) where P

1
�
and P

2
�
are norms. Then for each � in (0; 1), f :
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(X;P 1
��

) ! (Y; P 2
��

) is continuous, where P 1
��

(x) = _fP 1
�
(x) j � < �g

and P
2
��

(f(x)) = _fP 2
�
(f(x)) j � < �g.

Proof. Since for each � in (0; 1), f : (X;P 1
�
)! (Y; P 2

�
) is continuous,

for each � 2 (0; 1) and any x0 2 X, and positive real number t, there is

a positive real number � such that P 1
�
(x� x0) < � implies

P
2
�
(f(x)� f(x0)) <

t

2
:

From P
1
�
(x� x0) < �, there is a positive real number � such that

P
1
�
(x� x0) � � < �:

If � in (0; 1) is �xed, then

P
1
��

(x� x0) < �

) P
1
�
(x� x0) � � < � for each � < �

) P
2
�
(f(x)� f(x0)) <

t

2
for each � < �

) _fP 2
�
(f(x)� f(x0)) j � < �g �

t

2
< t;

and so, for each � 2 (0; 1) and any x0 2 X there is a positive real

number � such that P 1
��

(x�x0) < � implies P 2
��

(f(x)�f(x0)) < t.

Theorem 3.4. [5] Let (X; �1); (Y; �2) be fuzzy normed linear spaces

and f : (X; �1) ! (Y; �2) be continuous. Then for each � 2 (0; 1),

f : (X;P 1
�
)! (Y; P 2

�
) is continuous.

Lemma 3.5. For a �xed � 2 (0; 1), if we de�ne a function k � k on

CF ((X; �1); (Y; �2)) by

k f k= _fP 2
��

(f(x)) j P 1
��

(x) = 1; x 2 Xg:

Then k � k is a norm on CF ((X; �1); (Y; �2)):
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Proof. i) For f; g 2 CF ((X; �1); (Y; �2)),

k f + g k = _fP 2
��

(f + g)(x) j P 1
��

(x) = 1; x 2 Xg

= _fP 2
��

(f(x) + g(x)) j P 1
��

(x) = 1; x 2 Xg

� _fP 2
��

(f(x)) + P
2
��

(g(x)) j P 1
��

(x) = 1g

� _fk f k P 1
��

(x)+ k g k P 1
��

(x) j P 1
��

(x) = 1g

= _f(k f k + k g k)P 1
��

(x) j P 1
��

(x) = 1g

= k f k + k g k :

ii) For f 2 CF ((X; �1); (Y; �2)), if k f k= 0, then since P 2
��

is a crip

norm and since f is continuous, for any x 2 X,

0 � P
2
��

(f(x)) �k f k P 1
��

(x);

and so, P 2
��

(f(x)) = 0. Hence for any x 2 X; f(x) = 0.

iii) For any a 2 K and f 2 CF ((X; �1); (Y; �2)),

k af k = _fP 2
��

((af)(x)) j P 1
��

(x) = 1; x 2 Xg

= _fP 2
��

(af(x)) j P 1
��

(x) = 1; x 2 Xg

= _fj a j P 2
��

(f(x)) j P 1
��

(x) = 1g

= j a j k f k :

Lemma 3.6. Let �1; �2 be two fuzzy seminorms on a linear space X.

If for every x 2 X; �1(x) � �2(x), then for every � 2 (0; 1); P 1
�
(x) �

P
2
�
(x) for all x 2 X:

Proof. Since �1(x) � �2(x) for all x 2 X,

t�1(x) � t�2(x)

for all t 2 K; x 2 X. Let � 2 (0; 1) and x 2 X be �xed. Since

t�1(x) > � implies t�2(x) > �; ft > 0 j t�1(x) > �g is a subset of
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ft0 > 0 j t0�2(x) > �g. Hence

^ft > 0 j t�1(x) > �g � ^ft0 > 0 j t0�2(x) > �g;

equivalently P 1
�
(x) � P

2
�
(x). This completes the proof.

Definition 3.7. [5] Let (X; �1); (Y; �2) be fuzzy normed linear

spaces and CF (X; Y ) be the linear space of all fuzzy continuous linear

maps from (X; �1) to (Y; �2). For each � 2 (0; 1), t� : CF (X; Y )! R+

is de�ned by

t�(f) = ^fs > 0 j �2(f(x)) � � ^ �1(sx) for all x 2 Xg:

We write t�(f) = t(�; f). And the fuzzy norm �� : CF (X; Y ) ! [0; 1]

is de�ned by ��(f) = _�2(0;1)f� ^ 1=[t(�; f)]g, for any f 2 CF (X; Y ).

Theorem 3.8. Let (X; �1) be a fuzzy normed linear space over K

and (Y; �2) be a fuzzy Banach space over K. If �B
k�k

� ��, then

(CF (X; Y ); ��) is a fuzzy Banach space, where ��(f) = _f�^ 1
t(�;f)

j � 2

(0; 1)g, f 2 CF (X; Y ), Bk�k is the closed unit ball on (CF (X; Y ); k � k)

and k f k= _fP 2
��

(f(x)) j P 1
��

(x) = 1; x 2 Xg; f 2 CF (X; Y ); � 2

(0; 1):

Proof. �-Cauchy sequence in CF (X; Y ). Then by [7, Theorem 3.2],

for each t > 0, there is an M in Z
+ such that if n;m � M , then

�n ^ �m � � and P
�

(�n^�m)�
(fn � fm) < t. Let �B

k�k
= �0. Then for

each � 2 (0; 1), k f k= P
0
��
(f) where

P
0
��
(f) = _fP 0

�
(f) j � < �g

= _f^ft > 0 j t�0(f) > �g j � < �g:
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Hence for �n ^ �m � �,

P
0
(�n^�m)�

(fn � fm)

= k fn � fm k

= _ fP 2
(�n^�m)�

(fn � fm)(x) j P
1
(�n^�m)�

(x) = 1; x 2 Xg

= _ fP 2
(�n^�m)�

(fn(x)� fm(x)) j P
1
(�n^�m)�

(x) = 1g;

and so, for any x 2 X,

P
2
(�n^�m)�

(fn(x)� fm(x)) � P
0
(�n^�m)�

(fn � fm) � P
1
(�n^�m)�

(x):

And since �B
k�k
� ��,

P
0

�
(f) � P

�


�
(f);


 2 (0; 1); f 2 CF (X; Y ): Therefore for any x 2 X,

P
2
(�n^�m)�

(fn(x)� fm(x)) � P
0
(�n^�m)�

(fn � fm) � P
1
(�n^�m)�

(x)

� P
�

(�n^�m)�
(fn � fm) � P

1
(�n^�m)�

(x)

< t � P 1
(�n^�m)�

(x):

Thus ffn(x)g is an �-Cauchy sequence in (Y; �2) for each x 2 X. Since

(Y; �2) is a fuzzy Banach space, fn(x) converges to f(x) for each x 2 X,

so (fn; �n) is convergent to (f; �). Therefore (CF (X; Y ); ��) is a fuzzy

Banach space.

Corollary 3.9. If (X; �) is a fuzzy normed linear space over K,

�B
k�k
� �� and for f 2 CF (X;K)

k f k= _fj f(x) jj P��(x) = 1; x 2 Xg:

Then (CF (X;K); ��) is a fuzzy Banach space over K.

Proof. Since (X; �) and (K;�B
j�j
) are fuzzy normed linear spaces,

(CF (X;K); ��) is a fuzzy normed linear space over K. And since
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(K;�B
j�j
) is a fuzzy Banach space, (CF (X;K); ��) is a fuzzy Banach

space over K.
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