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A SIMPLE PROOF OF GR�OTZSCH'S PRINCIPLE

Bo-Hyun Chung

Abstract. The purpose of this paper is to apply the extremal length

to conformal mappings. We drive an interesting formula of Gr�otzsch

by an alternative simple method.

1. Introduction

The method of extremal length is a useful tool in a wide variety

of areas. Especially, it has been successfully applied to conformal

mappings, analytic functions of a complex variable. Extremal length

was introduced as a conformally invariant measure of curve families.

This development appeared in Ahlfors and Beurling [3].

Throughout this paper C will denote the �nite complex plane, D

is a domain in C .

2. Extremal length

Let � be a family whose elements 
 are locally recti�able curves in

D. We shall introduce a geometric quantity �(�), called the extremal

length of �.

Let �(z) be a non-negative Borel measurable function. Every curve


 has a well-de�ned \� - length"

(1) L(
; �) =

Z



�(z) jdzj;
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which may be in�nite, and D has a \� - area"

(2) A(D; �) =

ZZ
D

[�(z)]2 dx dy:

In order to de�ne an invariant which depends on the whole set �,

we introduce the minimum length

(3) L(�; �) = inf

2�

L(
; �);

where we agree that L(�; �) =1 in the case � is empty.

Definition 2.1.[1] The extremal length of � in D is de�ned as

(4) �(�) = �D(�) = sup
�

[L(�; �)]2

A(D; �)
;

where � is subject to the condition 0 < A(D; �) < 1, obviously

0 � �(�) � 1.

Remark 1. (i) �D(�) depends only on � and not on D. Accord-

ingly, we shall henceforth simplify the notation to �(�) ([1]).

(ii) Since almost every curve in C is recti�able, the non-recti�able

curves of a family � have no in
uence on the extremal length of �.So,

let us use curve or arc instead of locally recti�able curve ([8]).

There are two special cases in which the extremal length is very

easy to determine explicitly.

Proposition 2.2.[2] Let S be a rectangle of sides a and b. Let �

be the family of arcs in S which join the sides of length b. Then

�(�) =
a

b
:



A SIMPLE PROOF OF GR�OTZSCH'S PRINCIPLE 67

Proposition 2.3.[5] Let E be the annulus E = fz j a < jzj < bg.

Let � be the family of arcs in E which join the two contours. Then

�(�) =
1

2�
log

b

a
:

The conformal invariance of extremal length is an immediate con-

sequence of the de�nition.

Proposition 2.4.[7](Conformal invariance of extremal

length) Let z� = f(z) be a 1-1 conformal mapping on D upon a

domain D� and � be a family of curves in D, then

�(�) = �[f(�)]:

Proposition 2.5.[7] Suppose there exist disjoint open sets Gn

containing the curves in �n. If [n�n � �, then

X
n

1

�(�n)
�

1

�(�)
:

3. Geometric applications of extremal length

Here we shall give an alternative simple proof of the well-known

result by the method of extremal length.

Gr�otzsch's principle. [4] Suppose that we have a set of n dis-

joint general quadrilaterals Qk, for k = 1; 2; : : : ; n, that are contained

in the annulus � = fz j r < jzj < Rg, (0 < r < R, R 6= 1) and that

are bounded by Jordan curves each of which has an arc, in common

with each of the circles fz j jzj = rg and fz j jzj = Rg. (The Qk can

be regarded as strips extending from the inner to the outer circle.)
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If these domains Qk are mapped onto rectangles Sk with sides equal

respectively to ak and bk in such a way that the arcs referred to are

mapped into sides of lengths ak, then

(5)

nX
k=1

ak

bk
�

2�

log R

r

;

with equality holding only if the Qk are domains of the form

f(z; arg z)j r < jzj < R; �k < arg z < �k+1g completely �lling the

annulus.

Original Proof. Let us cut the annulus � = fz j r < jzj < Rg

along an arc belonging to the boundary one of the strips Qk and

let us map the simply connected domain obtained onto the plane

t = log z = u + iv. This mapping maps the strips Qk into strips

Q0

k
that extend from the line u = log r to the line u = logR. Let

z = gk(�) denote the functions inverse to those mentioned in this

principle. These functions map the strips Qk onto the rectangles

Bk = f(�; �)j 0 < � < bk; 0 < � < akg:

Then the functions t = log gk(�) = fk(�) map Bk onto the strips Q0

k
.

The images of the sides of length ak under this mapping lie on the

straight lines u = log r and u = logR.

We denote by Ik the area of the strip Q0

k
. Then, we obviously have

rX
k=1

Ik � 2� log
R

r
:

On the other hand,

Ik =

ZZ
Bk

jf 0
k
(�)j2d�d� =

Z
ak

0

 Z
bk

0

jf 0
k
(�)j2d�

!
d�

�

Z
ak

0

1

bk

 Z
bk

0

jf 0
k
(�)jd�

!2
d�;
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the inequality being obtained on the basis of the Schwarz inequality.

But the integrals Z
bk

0

jf 0
k
(�)jd�

are the lengths of the images of the sides parallel to the sides of length

bk; that is, they are the lengths of certain curves extending from the

line u = log r to the line u = logR. Therefore

Z
bk

0

f 0
k
(�)d� � log

R

r
;

and, consequently,

Ik � (
ak

bk
)(log

R

r
)2:

If we substitute this into

nX
k=1

Ik � 2� log
R

r
:

and divide by (log R

r
)2, we obtain (5).

For equality to hold in (5), it is obviously necessary that the strips

Qk completely �ll the annulus � = fz : r < jzj < Rg and that the

images (referred to above) of all the lines parallel to the sides of length

bk be lines parallel to the real axis, that is, that the Qk be of the form

f(z; arg z) : r < jzj < R; �k < arg z < �k+1g. A simple check shows

that in this case equality does indeed hold in (5). �

Alternative Simple Proof. We can map an arbitrary general quadri-

lateral conformally onto a rectangle,(ref. [6]). Let w = hk(z) be a 1-1

conformal mappings on Qk upon Sk respectively. Let � be the family

of arcs in � which join the two boundary circles, and let �k be the



70 BO{HYUN CHUNG

family of arcs in Qk which join the two sides of Qk � @�. Then by

Proposition 2.4 and Proposition 2.2,

(6) �(�k) = �[hk(�k)] =
bk

ak
:

By the hypothesis, there exist disjoint open setsQk(k = 1; 2; : : : ; n)

containing �k and [k�k � �. Hence by Proposition 2.5,

(7)

nX
k=1

1

�(�k)
�

1

�(�)
:

Therefore by Proposition 2.3, (6) and (7), we obtain (5). The proof

is complete. �
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