ESTIMATES OF QUASICONFORMAL MAPPINGS NEAR THE BOUNDARY

Bo-Hyun Chung and Sang Wook Kim

Abstract

In [2], D. Gaier has given an estimate of conformal mappings near the boundary. In this paper, we generalize for the K quasiconformal mapping the corresponding result.

1. Introduction and Results

Let G be a finite, simply connected domain with $0 \in G$ and $1 \in \partial G$. Let f be the conformal map of G onto the disc $D_{w}=\{w:|w|<1\}$ with $f(0)=0, f(1)=1$.

Definition 1.1 ([2]). We say that $z \in G$ is visible from a finite $z_{0} \in \partial G$, if the $\ell=\left(z, z_{0}\right)$ connecting z to z_{0} is contained in G.

Definition 1.2 ([2]). We say that G is starshaped with respect to $z_{0} \in \partial G$, if every $z \in G$ is visible from z_{0}.

Using those definitions, D. Gaier ([2]) established the following theorems for conformal mappings.

Theorem 1.3 (D. Gaier, [2]). Assume that $z \in G$ is visible from $z=1$ and that the function f mapping G onto D_{w} is normalized by $f(0)=0$ and $f(t) \rightarrow 1$ as $t \rightarrow 1$ on $\ell=(z, 1)$. Then, with $w=f(z)$, we have

$$
\begin{equation*}
|w-1|<4 \sqrt{|z-1|} \tag{1}
\end{equation*}
$$

Received by the editors on May 1, 2000.
1991 Mathematics Subject Classifications: 30C20, 30C62, 30D40.
Key words and phrases: Quasiconformal mapping, boundary behavior.

Corollary 1.4 ([2]). Let z, f and w be as in Theorem 1.3. If, in addition, $G \subset H$, where H is a half plane with $1 \in \partial H$, then we have

$$
\begin{equation*}
|w-1|<4|z-1| . \tag{2}
\end{equation*}
$$

In this note we extend Gaier's theorems to the K-quasiconformal mappings. As is well known, a K-quasiconformal mapping of a plane domain can be defined in three apparently different but in fact equivalent ways.

Definition 1.5 (Analytic definition, [6]). A homeomorphism $f(x)$ of a domain G is K-quasiconformal mapping if and only if it is absolutely continuous on lines, a.e. differentiable and

$$
\frac{1}{K} \max \left|f^{\prime}(x)\right| \leq|J(x)| \leq K \min \left|f^{\prime}(x)\right|
$$

a.e. in G, where $J(x)$ is the Jacobian of $f(x)$.

Theorem 1.6. Assume that $z_{0} \in G$ can be connected to $z=1$ by a Jordan are γ of length L lying in G except for its endpoint $z=1$. Let f be a K-quasiconformal mapping of G onto the disc $D_{w}=\{w:|w|<1\}$ with $f(0)=0$ and $f(z) \rightarrow 1$ as $z \rightarrow 1$ on γ. Then we have

$$
\begin{equation*}
\left|f\left(z_{0}\right)-1\right|<4^{2-1 / K} \cdot L^{1 /(2 K)} \tag{3}
\end{equation*}
$$

Corollary 1.7. Let z_{0}, γ, L and f be as in Theorem 1.6. If, in addition, $G \subset H$, where H is a half plane with $1 \in \partial H$, then we have

$$
\begin{equation*}
\left|f\left(z_{0}\right)-1\right|<4^{2-1 / K} \cdot L^{1 / K} . \tag{4}
\end{equation*}
$$

2. Capacity and an estimate of harmonic measure

Consider a positive mass distribution μ on the compact set E, i.e., a measure that vanishes on the complement of E. We define

$$
p_{N}(z)=\int \min \left(N, \log \frac{1}{|z-\zeta|}\right) d \mu(\zeta)
$$

and $p(z)=\lim _{N \rightarrow \infty} p_{N}(z)$. This is the logarithmic potential of μ. We set $V_{\mu}=\sup _{z} p(z)$. It may be infinite.

Definition 2.1 ([1]). If min $V_{\mu}=V$, we call e^{-V} the capacity of E. It is denoted by $\operatorname{Cap}(E)$.

The capacity is invariant under normalized conformal mappings. The double role of capacity as a conformal invariant and a geometric quantity permits us to gain relevant information about conformal mappings. Assume that the capacity of γ is $\operatorname{Cap}(\gamma)<\frac{1}{4}$.

The proofs of our theorems depend on some estimates of the harmonic measure of arcs. This is a well known tool in the study of conformal mappings near the boundary.

Let G be a domain in the complex plane whose boundary ∂G consists of a finite number of disjoint Jordan curves. Suppose that the boundary ∂G is divided into two parts E and E^{\prime}, each consisting of a finite number of arcs and closed curves. There exists a unique bounded harmonic function $m(z)$ in G such that $m(z) \rightarrow 1$ when z tends to an interior point of E and $m(z) \rightarrow 0$ when z tends to an interior point of E^{\prime}. The values of m lie strictly between 0 and 1 .

Definition $2.2([1])$. The number $m(z)$ is called the harmonic measure of E at the point z with respect to the domain G. It is denoted by $m(z, E, G)$.

The following theorem are known result.
Theorem 2.3 (Theorem of Nevanlinna, [4]). Let F be a simply connected subdomain of $D_{z}=\{z:|z|<1\}$ with $0 \notin F$. Let $\Gamma=\partial F \cap D_{z}$. Then

$$
m\left(z_{0}, \Gamma, F\right) \geq \frac{2}{\pi} \sin ^{-1}\left(\frac{1-\left|z_{0}\right|}{1+\left|z_{0}\right|}\right)
$$

for every $z_{0} \in F$.

3. Proof of the theorem

For our proof we will need the following lemmas.
Lemma 3.1. The estimates of the harmonic measure of γ at the point $z=0$ with respect to $G \backslash \gamma$:

$$
\begin{equation*}
m(0, \gamma, G \backslash \gamma) \leq \frac{2}{\pi} \sin ^{-1} 2 \sqrt{\operatorname{Cap}(\gamma)} \tag{5}
\end{equation*}
$$

Proof. Let $z=\varphi(w)$ map D_{w} conformally onto the complement of γ such that $\varphi(0)=\infty$ and $\varphi(1)=1$. Since the diameter of γ is $\leq 4 \operatorname{Cap}(\gamma)<1$, the point $z=0$ is not on γ and therefore $w_{0}=$ $\varphi^{-1}(0) \in D_{w}$. The expansion of φ at $w=0$ is of the form

$$
\varphi(w)=\frac{a}{w}+a_{0}+a_{1} w+\cdots
$$

with $|a|=\operatorname{Cap}(\gamma)$. Since $\varphi(w) \neq 1$ for $w \in D_{w}$, we see that

$$
F(w)=\frac{a}{\varphi(w)-1} .
$$

Then by the elementary distortion theorem (See Hayman [3]), we obtain

$$
|F(w)| \geq \frac{|w|}{(1+|w|)^{2}} \quad \text { i.e., } \quad \frac{\operatorname{Cap}(\gamma)}{|\varphi(w)-1|} \geq \frac{|w|}{(1+|w|)^{2}}
$$

Put $w=w_{0}$. Then we have

$$
\begin{equation*}
\sqrt{\left|w_{0}\right|}+\frac{1}{\sqrt{\left|w_{0}\right|}} \geq \frac{1}{\sqrt{\operatorname{Cap}(\gamma)}} \tag{6}
\end{equation*}
$$

Now, if $g=\varphi^{-1}(G \backslash \gamma)$ is the inverse image of $G \backslash \gamma$ not containing $w=0$, and if $D_{w}^{\prime}=D_{w} \backslash\{w: 0 \leq w<1\}$ is the slit unit disc, then

$$
m\left(w_{0}, \partial D_{w}, g\right) \leq m\left(-\left|w_{0}\right|, \partial D_{w}, D_{w}^{\prime}\right)
$$

The theorem of Nevanlinna(Theorem 2.3) tells us that

$$
\begin{equation*}
m\left(w_{0}, \partial D_{w}, g\right)=m(0, \gamma, G \backslash \gamma) \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
m\left(-\left|w_{0}\right|, \partial D_{w}, D_{w}^{\prime}\right)=\frac{2}{\pi} \sin ^{-1} \frac{2 \sqrt{\left|w_{0}\right|}}{\left|w_{0}\right|+1} . \tag{8}
\end{equation*}
$$

Hence by (6), (7) and (8), we obtain (5).
Lemma 3.2. Let $L(<1)$ be the length of γ, then

$$
\begin{equation*}
m(0, \gamma, G \backslash \gamma) \leq \frac{2}{\pi} \sin ^{-1} \sqrt{L} \tag{9}
\end{equation*}
$$

Proof. $\operatorname{Cap}(\gamma)$ and L satisfy $L \geq 4 \operatorname{Cap}(\gamma)$ (see pemmerenke [5]). Hence by Lemma 3.1, we obtain (9).

Proof of Thoerem 1.6. We may assume $L<1$. Put $m_{z}=$ $m(0, \gamma, G \backslash \gamma)$ and $m_{w}=m\left(0, f(\gamma), D_{w} \backslash f(\gamma)\right)$. Since f is a K-quasiconformal mapping of G onto D_{w} the harmonic measures satisfy the well-known relation

$$
\begin{equation*}
\sin \left(\frac{\pi m_{w}}{2}\right) \leq 4^{1-1 / K} \cdot\left[\sin \left(\frac{\pi m_{z}}{2}\right)\right]^{1 / K} . \tag{10}
\end{equation*}
$$

By virtue of (9), we have

$$
\begin{equation*}
\sin \left(\frac{\pi m_{w}}{2}\right) \leq \sqrt{L} \tag{11}
\end{equation*}
$$

And by Theorem 9 in [2], we obtain

$$
\pi m_{w}>\sin ^{-1}\left(\frac{\mid f\left(z_{0}-1 \mid\right.}{2}\right) .
$$

But for $0 \leq x \leq \pi, \sin x \leq 2 \sin \frac{x}{2}$ and we have

$$
\begin{equation*}
\sin \left(\frac{\pi m_{w}}{2}\right)>\frac{1}{4}\left|f\left(z_{0}\right)-1\right| . \tag{12}
\end{equation*}
$$

Hence by (10), (11) and (12), we obtain (3).
Proof of Corollary 1.7. Let H be a half plane with $1 \in \partial H$. If $G \subset H$, the mapping $\xi=1-(1-z)^{2}$ carries G onto G_{ξ} so that $0,1, z_{0}$, γ correspond to $0,1, \xi_{0}, \gamma_{\xi}$, respectively. Now the length of γ is $\leq L^{2}$.

For if γ is represented in terms of arc length, $z=z(s)(0 \leq s \leq L)$, the length of γ_{ξ} is

$$
\frac{1}{2} \int|d \xi|=\int_{0}^{L}|1-z(s)| \cdot\left|z^{\prime}(s)\right| d s
$$

where $\left|z^{\prime}(s)\right|=1$ almost everywhere and $|1-z(s)| \leq s$. We apply Theorem 1.6 to the mapping from the ξ-plane onto D_{w}. Hence we obtain (4).

References

1. L. V. Ahlfors, Conformal Invariants, Topics in Geometric Function Theory, McGraw-Hill, New York, 1973.
2. D. Gaier, Estimates of conformal mappings near the boundary, Indiana Univ. Math. J. 21 (1992), 581-595.
3. W. K. Hayman, Multivalent functions, Cambridge, 1958.
4. R. Nevanlinna, Über eine Minimumaufgabe in der theorie der knoformen Abbildung, Nachr. Akad. wiss. Göttingen 1933, 103-115.
5. C. Pommerenke, Über die Kapazität ebener Kontinuen, Math. Ann. 139 (1959), 64-75.
6. J. Väisälä, On quasiconformal mappings in space, Ann. Acad. Sci. Fenn. AI 298, 1961, 1-36.
7. S. E. Warschawski, On differentiability at the boundary in conformal mapping, Proc. Amer. Math. Soc. 12 (1961), 614-620.
8. \qquad , On Hölder continuity at the boundary in conformal maps, J. Math. Mech. 18 (1968), 423-428.

Mathematics Section, College of Science and Technology

Hongik University
Chochiwon 339-701, Korea
E-mail: bohyun@wow.hongik.ac.kr
Department of Mathematics
Chungbuk National University
Cheongju 361-763, Korea
E-mail: swkim@cbucc.chungbuk.ac.kr

