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ESTIMATES OF QUASICONFORMAL MAPPINGS
NEAR THE BOUNDARY

Bo-HyuN CHUNG AND SANG WOOK Kim

ABSTRACT. In [2], D. Gaier has given an estimate of conformal map-
pings near the boundary. In this paper, we generalize for the K-

quasiconformal mapping the corresponding result.

1. Introduction and Results

Let G be a finite, simply connected domain with 0 € G and 1 € 0G.
Let f be the conformal map of G onto the disc D, = {w : |w| < 1}
with f(0) =0, f(1) = 1.

DEFINITION 1.1 ([2]). We say that z € G is wvisible from a finite

29 € 0G, if the £ = (z, zp) connecting z to zq is contained in G.

DEFINITION 1.2 ([2]). We say that G is starshaped with respect to

zo € 0G, if every z € (G is visible from zg.

Using those definitions, D. Gaier ([2]) established the following the-

orems for conformal mappings.

THEOREM 1.3 (D. Gaier, [2]). Assume that z € G is visible from
2z = 1 and that the function f mapping G onto D, is normalized by
f(0)=0and f(t) > 1 ast — 1 on ¥l = (z,1). Then, with w = f(z),

we have
(1) lw—1| < 44/]z — 1].
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COROLLARY 1.4 ([2]). Let z, f and w be as in Theorem 1.3. If, in
addition, G C H, where H is a half plane with 1 € OH, then we have

(2) lw—1] < 4]z —1].

In this note we extend Gaier’s theorems to the K-quasiconformal
mappings. As is well known, a K-quasiconformal mapping of a plane
domain can be defined in three apparently different but in fact equiva-
lent ways.

DEFINITION 1.5 (Analytic definition, [6]). A homeomorphism f(z)
of a domain G is K-quasiconformal mapping if and only if it is abso-
lutely continuous on lines, a.e. differentiable and

%max|f’($)| < [J(z)| < K min|f'(z)|

a.e. in G, where J(z) is the Jacobian of f(x).

THEOREM 1.6. Assume that zy € GG can be connected to z = 1 by a
Jordan are vy of length L lying in G except for its endpoint z = 1. Let f
be a K-quasiconformal mapping of G onto the disc D,, = {w : |w| < 1}
with f(0) =0 and f(z) = 1 as z — 1 on y. Then we have

(3) |f(z0) — 1] < 427 YK [1/@EK)

COROLLARY 1.7. Let zy, v, L and f be as in Theorem 1.6. If, in
addition, G C H, where H is a half plane with 1 € OH, then we have

(4) |f20) — 1] < 4> VK LVK,

2. Capacity and an estimate of harmonic measure

Consider a positive mass distribution p on the compact set F, i.e.,
a measure that vanishes on the complement of £. We define

px(2) = [ min (N, log ) au(¢)

1
2 = (|
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and p(z) = limy_, 0 pn(2). This is the logarithmic potential of u. We
set V, = supp(z). It may be infinite.

DEFINITION 2.1 ([1]). If minV, =V, we call e7" the capacity of E.
It is denoted by Cap(FE).

The capacity is invariant under normalized conformal mappings.
The double role of capacity as a conformal invariant and a geomet-
ric quantity permits us to gain relevant information about conformal
mappings. Assume that the capacity of v is Cap(7) < 1.

The proofs of our theorems depend on some estimates of the har-
monic measure of arcs. This is a well known tool in the study of con-
formal mappings near the boundary.

Let GG be a domain in the complex plane whose boundary dG consists
of a finite number of disjoint Jordan curves. Suppose that the boundary
0@ is divided into two parts E' and E’, each consisting of a finite number
of arcs and closed curves. There exists a unique bounded harmonic
function m(z) in G such that m(z) — 1 when z tends to an interior
point of E and m(z) — 0 when z tends to an interior point of E’. The
values of m lie strictly between 0 and 1.

DEFINITION 2.2 ([1]). The number m(z) is called the harmonic mea-
sure of E at the point z with respect to the domain G. It is denoted
by m(z, E,G).

The following theorem are known result.

THEOREM 2.3 (Theorem of Nevanlinna, [4]). Let F' be a simply con-
nected subdomain of D, = {z : |z| <1} withO ¢ F. Let ' = 0F N D,.
Then

2 1-—
m(z, I, F) > = sin™" < |ZO|>
7 1+ ||

for every zy € F.
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3. Proof of the theorem
For our proof we will need the following lemmas.

LEMMA 3.1. The estimates of the harmonic measure of v at the
point z = 0 with respect to G\v:

(5) m(0,7,G\n) < = sin™' 2/Cap(3).

Proof. Let z = ¢(w) map D,, conformally onto the complement of
v such that ¢(0) = oo and ¢(1) = 1. Since the diameter of 7 is
< 4Cap(y) < 1, the point z = 0 is not on v and therefore wy, =
¢ 1(0) € D,,. The expansion of ¢ at w = 0 is of the form

a
go(w)z;%—ao—kalw%—---

with |a| = Cap(y). Since p(w) # 1 for w € D,,, we see that

o= sw—1

Then by the elementary distortion theorem (See Hayman [3]), we obtain

wl . Caply) _ Jul

FOl23qaye " ) -1 = T e

Put w = wy. Then we have
1 1
> .
ViIwel ~ /Cap()
Now, if ¢ = ¢~ '(G\) is the inverse image of G'\"y not containing w = 0,
and if D!, = D,,\{w : 0 < w < 1} is the slit unit disc, then

(6) |wol +

m(U)OaaDwag) < m(—|w0|,aDw,D;U) .

The theorem of Nevanlinna(Theorem 2.3) tells us that

(7) m(w07 aDw: g) = m(O, Vs G\/Y) 3
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2 2
(8) m(—|wyl|, 0Dy, D;,) = Zgin~! \/@ '
T

Hence by (6), (7) and (8), we obtain (5). O

LEMMA 3.2. Let L(< 1) be the length of vy, then
2
9) m(0,7,G\Y) < =sin' VL.
m

Proof. Cap(v) and L satisfy L > 4Cap(y) (see pemmerenke [5]).
Hence by Lemma 3.1, we obtain (9). O

PrOOF OF THOEREM 1.6. We may assume L < 1. Put m, =
m(0,v, G\y) and m,, = m(0, f(7), Dy \f(7)). Since f is a K-quasiconformal
mapping of G onto D,, the harmonic measures satisfy the well-known
relation

1/K
(10) sin (7772%) < AVE [sin (W;nz)} .

By virtue of (9), we have

(11) sin (7”;‘“’) < VL.

And by Theorem 9 in [2], we obtain

|f(20—1|> _

My > sin ! < 5

But for 0 <z <7, sinz < 2sin § and we have

(12) sin (7”;‘“’) > %|f(zo) T
Hence by (10), (11) and (12), we obtain (3). O

PROOF OF COROLLARY 1.7. Let H be a half plane with 1 € 0H. If
G C H, the mapping £ = 1 — (1 —z)? carries G onto G¢ so that 0, 1, z,
7 correspond to 0, 1, &, ¢, respectively. Now the length of v is < L2
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For if v is represented in terms of arc length, z = 2(s) (0 < s < L), the

3 [1ae1= [ -1 1 0

where |Z/(s)] = 1 almost everywhere and |1 — 2(s)| < s. We apply

length of 7 is

Theorem 1.6 to the mapping from the &-plane onto D,,. Hence we
obtain (4). O
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