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ESTIMATES OF QUASICONFORMAL MAPPINGS

NEAR THE BOUNDARY

Bo-Hyun Chung and Sang Wook Kim

Abstract. In [2], D. Gaier has given an estimate of conformal map-

pings near the boundary. In this paper, we generalize for the K-

quasiconformal mapping the corresponding result.

1. Introduction and Results

Let G be a �nite, simply connected domain with 0 2 G and 1 2 @G.

Let f be the conformal map of G onto the disc Dw = fw : jwj < 1g
with f(0) = 0, f(1) = 1.

Definition 1.1 ([2]). We say that z 2 G is visible from a �nite

z0 2 @G, if the ` = (z; z0) connecting z to z0 is contained in G.

Definition 1.2 ([2]). We say that G is starshaped with respect to

z0 2 @G, if every z 2 G is visible from z0.

Using those de�nitions, D. Gaier ([2]) established the following the-

orems for conformal mappings.

Theorem 1.3 (D. Gaier, [2]). Assume that z 2 G is visible from

z = 1 and that the function f mapping G onto Dw is normalized by

f(0) = 0 and f(t) ! 1 as t ! 1 on ` = (z; 1). Then, with w = f(z),

we have

jw � 1j < 4
p
jz � 1j :(1)
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Corollary 1.4 ([2]). Let z, f and w be as in Theorem 1.3. If, in

addition, G � H, where H is a half plane with 1 2 @H, then we have

jw � 1j < 4jz � 1j :(2)

In this note we extend Gaier's theorems to the K-quasiconformal

mappings. As is well known, a K-quasiconformal mapping of a plane

domain can be de�ned in three apparently di�erent but in fact equiva-

lent ways.

Definition 1.5 (Analytic de�nition, [6]). A homeomorphism f(x)

of a domain G is K-quasiconformal mapping if and only if it is abso-

lutely continuous on lines, a.e. di�erentiable and

1

K
max jf 0(x)j � jJ(x)j � Kmin jf 0(x)j

a.e. in G, where J(x) is the Jacobian of f(x).

Theorem 1.6. Assume that z0 2 G can be connected to z = 1 by a

Jordan are  of length L lying in G except for its endpoint z = 1. Let f

be a K-quasiconformal mapping of G onto the disc Dw = fw : jwj < 1g
with f(0) = 0 and f(z)! 1 as z ! 1 on . Then we have

jf(z0)� 1j < 42�1=K � L1=(2K) :(3)

Corollary 1.7. Let z0, , L and f be as in Theorem 1.6. If, in

addition, G � H, where H is a half plane with 1 2 @H, then we have

jf(z0)� 1j < 42�1=K � L1=K :(4)

2. Capacity and an estimate of harmonic measure

Consider a positive mass distribution � on the compact set E, i.e.,

a measure that vanishes on the complement of E. We de�ne

pN(z) =

Z
min

�
N; log

1

jz � �j

�
d�(�)
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and p(z) = limN!1 pN (z). This is the logarithmic potential of �. We

set V� = sup
z

p(z). It may be in�nite.

Definition 2.1 ([1]). If minV� = V , we call e�V the capacity of E.

It is denoted by Cap(E).

The capacity is invariant under normalized conformal mappings.

The double role of capacity as a conformal invariant and a geomet-

ric quantity permits us to gain relevant information about conformal

mappings. Assume that the capacity of  is Cap() < 1
4
.

The proofs of our theorems depend on some estimates of the har-

monic measure of arcs. This is a well known tool in the study of con-

formal mappings near the boundary.

Let G be a domain in the complex plane whose boundary @G consists

of a �nite number of disjoint Jordan curves. Suppose that the boundary

@G is divided into two parts E and E 0, each consisting of a �nite number

of arcs and closed curves. There exists a unique bounded harmonic

function m(z) in G such that m(z) ! 1 when z tends to an interior

point of E and m(z)! 0 when z tends to an interior point of E 0. The

values of m lie strictly between 0 and 1.

Definition 2.2 ([1]). The numberm(z) is called the harmonic mea-

sure of E at the point z with respect to the domain G. It is denoted

by m(z; E;G).

The following theorem are known result.

Theorem 2.3 (Theorem of Nevanlinna, [4]). Let F be a simply con-

nected subdomain of Dz = fz : jzj < 1g with 0 62 F . Let � = @F \Dz.

Then

m(z0;�; F ) �
2

�
sin�1

�
1� jz0j
1 + jz0j

�

for every z0 2 F .
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3. Proof of the theorem

For our proof we will need the following lemmas.

Lemma 3.1. The estimates of the harmonic measure of  at the

point z = 0 with respect to Gn:

m(0; ; Gn) � 2

�
sin�1 2

p
Cap() :(5)

Proof. Let z = '(w) map Dw conformally onto the complement of

 such that '(0) = 1 and '(1) = 1. Since the diameter of  is

� 4Cap() < 1, the point z = 0 is not on  and therefore w0 =

'�1(0) 2 Dw. The expansion of ' at w = 0 is of the form

'(w) =
a

w
+ a0 + a1w + � � �

with jaj = Cap(). Since '(w) 6= 1 for w 2 Dw, we see that

F (w) =
a

'(w)� 1
:

Then by the elementary distortion theorem (See Hayman [3]), we obtain

jF (w)j � jwj
(1 + jwj)2 i:e:;

Cap()

j'(w)� 1j �
jwj

(1 + jwj)2 :

Put w = w0. Then we have

p
jw0j+

1p
jw0j

� 1p
Cap()

:(6)

Now, if g = '�1(Gn) is the inverse image of Gn not containing w = 0,

and if D0

w
= Dwnfw : 0 � w < 1g is the slit unit disc, then

m(w0; @Dw; g) � m(�jw0j; @Dw; D
0

w
) :

The theorem of Nevanlinna(Theorem 2.3) tells us that

m(w0; @Dw; g) = m(0; ; Gn) ;(7)
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m(�jw0j; @Dw; D
0

w
) =

2

�
sin�1

2
p
jw0j

jw0j+ 1
:(8)

Hence by (6), (7) and (8), we obtain (5).

Lemma 3.2. Let L(< 1) be the length of , then

m(0; ; Gn) � 2

�
sin�1

p
L :(9)

Proof. Cap() and L satisfy L � 4Cap() (see pemmerenke [5]).

Hence by Lemma 3.1, we obtain (9).

Proof of Thoerem 1.6. We may assume L < 1. Put mz =

m(0; ; Gn) andmw = m(0; f(); Dwnf()). Since f is aK-quasiconformal

mapping of G onto Dw the harmonic measures satisfy the well-known

relation

sin
��mw

2

�
� 41�1=K �

h
sin

��mz

2

�i1=K
:(10)

By virtue of (9), we have

sin
��mw

2

�
�
p
L :(11)

And by Theorem 9 in [2], we obtain

�mw > sin�1
� jf(z0 � 1j

2

�
:

But for 0 � x � �, sin x � 2 sin x

2
and we have

sin
��mw

2

�
>

1

4
jf(z0)� 1j :(12)

Hence by (10), (11) and (12), we obtain (3).

Proof of Corollary 1.7. Let H be a half plane with 1 2 @H. If

G � H, the mapping � = 1� (1�z)2 carries G onto G� so that 0, 1, z0,

 correspond to 0, 1, �0, �, respectively. Now the length of  is � L2.
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For if  is represented in terms of arc length, z = z(s) (0 � s � L), the

length of � is

1

2

Z
jd�j =

Z
L

0

j1� z(s)j � jz0(s)j ds

where jz0(s)j = 1 almost everywhere and j1 � z(s)j � s. We apply

Theorem 1.6 to the mapping from the �-plane onto Dw. Hence we

obtain (4).
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