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SEMIGROUP-VALUED FUNCTION
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Abstract. In this paper, we will introduce the pan-dual generalized

fuzzy integral of a commutative isotonic semigroup-valued functions,

which is generalized of the (DG) fuzzy integral and investigate the

fundamental properties of this kind of fuzzy integral.

1. Introduction

In 1980, D. A. Ralescu and G. Adams generalized the concept of

fuzzy integral due to M. Sugeno[4]. For convenience, we will call it (S)

fuzzy integral. Following that D. A. Ralescu and G. Adams[1], and D.

A. Ralescu[2] have investigated the basic properties of (S) fuzzy inte-

gral. Wang Zhenyuen obtained a series of (S) fuzzy integral convergent

theorems in [5]. Meanwhile, Zhao Ruhuai introduced a new de�nition

of fuzzy integral, viz. (N) fuzzy integral in [8]. Wu Congxin, Wang

Shuli, and Ma Ming [6] introduced the (G) fuzzy integral using a gen-

eralized triangular norm which is a generalization of both (S) fuzzy in-

tegral and (N) fuzzy integral. In this paper, we introduce the pan-dual

generalized fuzzy integral of a commutative isotonic semigroup-valued

function, which is generalization of the (DG) fuzzy integral [3] , show

some equivalent conditions of (PDG) fuzzy integral and investigate the

fundamental properties of this kind of fuzzy integral.
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2. Perliminaries

Definition 2.1. Let X be a nonempty set, A be a �-algebra of a

class of the subsets of X , the mapping � : A! [0;1] is called a fuzzy

measure provided

(1) �(;) = 0;

(2) if A � B, then �(A) � �(B);

(3) if A1 � A2 � � � � � An � � � � ; An 2 A, then �([1
n=1An) =

limn!1(An);

(4) A1 � A2 � � � � � An � � � � ; An 2 A and there exists a

natural number n0 such that �(An0
) < 1, then �(\1

n=1An) =

limn!1 �(An).

If � is a fuzzy measure, (X;A; �) is called a fuzzy measure space.

Definition 2.2. Let (X;A; �) be a fuzzy measure space, f : X !

[0;1] is said to be A-measurable function if N�(f) 2 A for all � 2

(�1;1), where N�(f) = fx : f(x) > �g.

Definition 2.3. Let � be a binary operation on �R+. The pair

( �R+;�) is called a commutative isotonic semigroup and � called pan-

additive on �R+ i� � satis�es the following requirements:

(PA1) a� b = b� a;

(PA2) (a� b)� c = a� (b� c);

(PA3) a � b, then a� c � b� c for any c;

(PA4) a� 0 = a;

(PA5) if limn an and limn bn exit, then limn(an � bn) exists, and

limn(an � bn) = limn an � limn bn.

Definition 2.4. Let � be a binary operation on �R+. The triple

( �R+;�;�), where � is a pan-addition on �R+, is called a commutative

isotonic semiring with respect to � and �, i�:

(PM1) a� b = b� a;

(PM2) (a� b)� c = a� (b� c);
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(PM3) (a� b)� c = (a� c)� (b� c);

(PM4) if a � b, then (a� c) � (b� c) for any c;

(PM5) a 6= 0 and b 6= 0 () a� b 6= 0;

(PM6) there exists e 2 �R+ such that e� a = a for any a 2 �R+;

(PM7) if limn an and limn bn exist and are �nite, then limn(an �

bn) = limn an � limn bn.

The operation � is called a pan-multiplication on �R+, and the number

e is called the unit element of ( �R+;�;�).

Note 2.1 �R+ with the common addition and the common multipli-

cation of real numbers is a commutative isotonic semiring.

Note 2.2 �R+ with the logical addition and the logical multiplica-

tion of real numbers is a commutative isotonic semiring. If (X;A; �)

is a fuzzy measure space and ( �R+;�;�) is a commutative semiring,

(X;A; �; �R+;�;�) is called a pan-space and if E � X,

�E =

(
e; if x 2 E

0; otherwise

is called the pan-characteristic function of E, where e is the unit element

of ( �R+;�;�).

Definition 2.5. Let (X;A; �; �R+;�;�) be a pan-space. A function

onX given by s(x) = �n

i=1[ai��Ei(x)] is called a pan-simple measurable

function, where ai 2 �R+ ; i = 1; 2; � � � ; n and fEi : i = 1; 2; � � � ; ng is a

measurable partition of X.

3. De�nition and fundamental properties of (PDG) fuzzy in-

tegral

Definition 3.1. Denote D = [0;1]� [0;1], the mapping T : D !

[0;1] is called a c-generalized triangular conorm provided
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(1) T [0; x] = x; 8x 2 [0;1] and there exists an e 2 [0;1] such that

T [x; e] = x; 8x 2 [0;1];

and e is called the unit element of T ;

(2) T [x; y] = T [y; x]; 8(x; y) 2 D;

(3) T [x1; y1] � T [x2; y2] whenever x1 � x2; y1 � y2;

(4) if f(xn; yn)g � D; (x; y) 2 D, and xn ! x; yn ! y, then

T [xn; yn]! T [x; y].

Note 3.1 From (1) and (3), T [x;1] =1 for any x 2 [0;1].

Note 3.2 Take T1[x; y] = max[x; y], T2[x; y] = x + y , T3[x; y] =

x� y, and

T4[x; y] =

(
1; maxfx; yg =1

x + y + k(xy)p; maxfx; yg <1 (k > 0; p > 0);

then T1, T2, T3, and T4 are c-generalized triangular conorms.

Definition 3.2. Let (X;A; �; �R+;�;�) be a pan-space, and let T

be a c-generalized triangular conorm, and f be a nonnegative mea-

surable function, A 2 A. (PDG) fuzzy integral of f on A is de�ned

by

(PDG)

Z
A

fd� = inf
f�s

QA(s);

where s =
L

n

i=1[�i � �Ai
], �i 6= �j (i 6= j), �i > 0, Ai 2 A (i =

1; 2; � � � ; n), Ai \ Aj = ; (i 6= j), [n
i=1Ai = X, Ac

i
= X � Ai and �Ai

denotes the characteristic function of Ai, and

QA(s) =

n^
i=1

T [�i; �(A \ A
c

i
)]:
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Theorem 3.3. For (PDG) fuzzy integrals we have the following

equivalent forms:

(PDG)

Z
A

fd� = inf
��0

T [�; �(A \N�

�
(f))]

= inf
��0

T [�; �(A \N�(f))]

= inf
E2A

T [sup
x2E

f(x); �(A \ Ec)]:

where N�

�
(f) = fx : f(x) � �g.

Proof. The above four expressions are denoted by (1),(2),(3),and(4)

in proper order. Then we infer (1)�(4): For any E 2 A, it is clear that

(sup
x2E

f(x))� �E +1� �Ec � f

from De�nition 3.2, we know

(PDG)

Z
A

fd� � T [sup
x2E

f(x); �(A \ Ec)]

hence

(PDG)

Z
A

fd� � inf
E2A

T [sup
x2E

f(x); �(A \ Ec)]:

(4)�(3): By fx : f(x) � �g 2 A for any � � 0, and

sup
x2fx:f(x)��g

f(x) � �;

we have

T [�; �(A \N�(f))] � T [ sup
x2fx:f(x)��g

f(x); �(A \N�(f))]

� inf
E2A

T [sup
x2E

f(x); �(A \ Ec)]

Since � is arbitrary, we have

inf
��0

T [�; �(A \N�(f))] � inf
E2A

T [sup
x2E

f(x); �(A \ Ec)]:
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(3)�(2): N�(f) � N�

�
(f) and the monotonicity of fuzzy measure �

and c-generalized triangular conorm T follows (3)�(2).

(2)�(1): Suppose s =
L

n

i=1[�i��Ai
] is an arbitrary simple function

such that s � f , then

QA(s) =

n^
i=1

T [�i; �(A \ A
c

i
)] = T [�i0; �(A \ A

c

i0
)]

by Ai0
� fx : f(x) � �i0g and hence Ac

i0
� N�i0

(f), it follows that

QA(s) = T [�i0; �(A \ A
c

i0
)] � T [�i0 ; �(A \N�i0

(f))]:

Further, we show that

T [�i0; �(A \N�i0
(f))] � inf

��0
T [�; �(A \N�

�
(f))]:

In fact, if T [�i0 ; �(A \N�i0
(f))] =1, then the inequality is trivial. If

T [�i0 ; �(A\N�i0
(f))] <1, then for any " > 0, by De�nition 3.1, there

exists a natural number n0 such that

T [�i0 ; �(A \N�i0
(f))] + " > T [�i0 + 1=n0; �(A \N�i0

(f))]

� T [�i0 + 1=n0; �(A \N�

�i0
+1=n0

(f))]

� inf
��0

T [�; �(A \N�

�
(f))]

since " is arbitrary, this implies that

T [�i0; �(A \N�i0
(f))] � inf

��0
T [�; �(A \N�

�
(f))]:

From this, by De�nition 3.2, it is known that (2)�(1). From the pre-

ceding proof we infer (1)=(2)=(3)=(4).

In the following we give the simple properties of (PDG) fuzzy inte-

grals.

Theorem 3.4. For (PDG) fuzzy integrals, we have

(1) if f1 � f2, then (PDG)
R
A
f1d� � (PDG)

R
A
f2d�;
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(2) if A1 � A2, (PDG)
R
A1

fd� � (PDG)
R
A2

fd�

(3) if �(A) = 0, then (PDG)
R
A
fd� = 0;

(4) (PDG)
R
A
fd� = (PDG)

R
X
f � �Ad�;

(5) (PDG)
R
A
(f1 ^ f2)d� � (PDG)

R
A
f1d� ^ (PDG)

R
A
f2d�;

(6) (PDG)
R
A
cd� = c^�(A) for any A 2 A and constant c 2 [0;1].

Proof. The proofs of (1)-(5) are deduced directly from Theorem 3.1.

We will prove (6).

(6) For any � � 0, we have

N�(c) =

(
X; � < c

;; � � c

Hence from Theorem 3.1 it is known that

(PDG)

Z
A

cd� =

Z
0��<c

T [�; �(A \N�(c))] ^

Z
�>c

T [�; �(A \N�(c))]

= inf
0��<c

T [�; �(A)] ^ inf
��c

T [�; 0] = �(A) ^ c:

Theorem 3.5. Let f , g be nonnegative measurable functions. Then

(PDG)
R
fd� = (PDG)

R
gd� whenever f = g a.e., if and only if � is

null-additive.

Proof. Su�ciency: Suppose that � is null-additive and f = g a.e.

Put B = fx : f(x) 6= g(x)g Then �(B) = 0 and �(N�(g)) = �(N�(g) [

B). So we have �(N�(f)) � �(N�(g) [ B) = �(N�(g)) for any � > 0.

The converse inequality holds as well, we have �(N�(f)) = �(N�(g)).

By Theorem 3.3, we have (PDG)
R
fd� = (PDG)

R
gd�

Necessity: For any A 2 A, B 2 A with �(B) = 0, if �(A) = 1,

then by the monotonicity of �, we have �(A [ B) = 1 = �(A). Now
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we assume that �(A) <1. De�ne

f(x) =

(
e; x 2 A [B

0; x =2 A [B
; and g(x) =

(
e; x 2 A

0; x =2 A

where e is the unit of T . Then f = g a:e: So by the hypothesis,

(PDG)

Z
fd� = inf

��0
T [�; �(N�(f))]

= inf
��0

T [�; �(N�(g))]

= (PDG)

Z
gd�

Therefore T [e; �(A[B)] = T [e; �(A)]. It follows that �(A\B) = �(A).

Hence � is null-additive.

Corollary 3.6. If � is null-additive, then

(PDG)

Z
A

fd� = (PDG)

Z
A

gd�

whenever f = g a:e: on A.

Proof. If f = g a:e: on A, then f�A = g�A; a:e: From Theorem 3.5

and Theorem 3.4 (4), we get the conclusion.

Corollary 3.7. If � is null-additive, then

(PDG)

Z
A[B

fd� = (PDG)

Z
A

fd�

whenever A 2 A, B 2 A with �(B) = 0.

Proof. Since f�A[B = f�A a:e: by Theorem 3.5 and Theorem 3.4

(4), we get the conclusion.

Theorem 3.8. Let (X;A; �) be a fuzzy measure space and f be a

nonnegative measurable function. Then A 2 A,

(PDG)

Z
A

fd� � (PDG)

Z
1

0

gA(�)dm
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where m is the Lebesgue measure and gA(�) = �(A \N�(f)).

Proof. If t > �, then gA(t) � gA(�). Therefore we have fx : gA(x) >

gA(�)g � [0; �] for any � 2 R+. Hence m(NgA(�)(gA)) � � for any

� 2 R+. It follows that

(PDG)

Z
A

fd� = inf
�>0

T [�; �(A \N�(f))]

= inf
�>0

T [�; gA(�)]

= inf
�>0

T [m(N�(gA)); gA(�)]

� (PDG)

Z
1

0

gAdm

Hence we have (PDG)
R
A
fd� � (PDG)

R
1

0
gAdm.

4. Integral equations

In this section, we always suppose that �(X) = 1 and T [0; x] = x

for all x 2 [0;1].

Theorem 4.1. For � 2 [0;1), the almost everywhere �nite nonneg-

ative measurable function f satis�es the equation (PDG)
R
A
fd� = �

if and only if T [�; �(A \ N�(f))] � � for all � � 0 and there exists

�0 2 [0;1) such that T [�0; �(A \N�0
(f))] = �.

Proof. Let (PDG)
R
A
fd� = �. By Theorem 3.3, (PDG)

R
A
fd� =

inf��0 T [�; �(A \ N�(f))]. We have T [�; �(A \ N�(f))] � � for all

� � 0. In addition, by the equation, there exists a sequence fxng

such that limn!1 T [xn; �(Nxn(f))] = �. Take a subsequence of fxng

monotonely convergent to x0 2 [0;1]. Without confusion, we also de-

note it as fxng. If xn " 1, then �(A \Nxn(f)) # 0. By the hypothesis

limn!1 T [ 1
n
;1] =1, we infer that � = limn!1 T [xn; �(A\Nxn(f))] =

1. This contradicts � 2 (0;1). If xn converges to x0 2 [0;1) mono-

tonely, by Theorem 3.3 and properties of c-generalized triangle norm,
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we infer that

� = lim
n!1

T [xn; �(A \Nxn(f))]

= T [x0; �(A \Nx0
(f))]

� inf
��0

T [�; �(A \N�(f))]

= �

Hence we have T [x0; �(A \Nx0
(f))] = �.

Conversely, by the hypothesis

T [�; �(A \N�(f))] � �

for all � � 0, we have

(PDG)

Z
A

fd� � �:

In addition,

� = T [�0; �(A \N�0
(f))]

� inf
��0

T [�; �(A \N�(f))]

= (PDG)

Z
A

fd�

Hence we have � = (PDG)
R
A
fd�.

Theorem 4.2. Let k(x) be a nonnegative measurable function and

� 2 [0;1). Then there exists a nonnegative measurable function f

such that (PDG)
R
(k _ f)d� = � if and only if there exists a non-

negative measurable function h with k(x) � h(x); x 2 X such that

T [�; �(N�(h))] � � for all � � 0 and T [�0; �(N�0
(h))] = � for some

�0 > 0.

Proof. Let (PDG)
R
(k _ f)d� = � and h(x) = (k _ f)(x). Then

k(x) � h(x) for all x 2 X, and
R
h(x)d� = �. By Theorem 4.1,



PAN-DUAL GENERALIZED FUZZY INTEGRAL 37

T [�; �(N�(h))] � � for all � � 0 and T [�0; �(N�0
(h))] = � for some

�0 > 0. Conversely, if h(x) ful�lls the condition, then (PDG)
R
(h _

k)d� = (PDG)
R
hd�. By Theorem 4.1, (PDG)

R
(k _ f)d� = �.
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