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A Study of Effective Team Decision Making Using
A Distributed Al Model

Kang, Mincheo}

The objective of this paper is fo show how feam study can be advanced with the cid of a curent
computer technology, that is distributed Artificial Intelligence (DA). Studying distibuted problem solving by
using groups of arfificial agents, DAl can provide important idecs and techniques for the study of teom
behaviors like team decision making.

To demonstrate the usefulness of DAl models as team research tools, a DAl model cdlled "Team-Soar”
waos built and a simulation experiment done with the model was Infroduced. Here, Team-Soar models a
naval command and confrol team consisting of four members whose mission was fo identify the threat
level of aircraft, The simulation experiment was performed to examine the relationships of team decision
scheme and member incompetence with team performonce. Generclly, the results of the Team-Soar
simulation met expectations and confimed previous findings In the literature, For example, the resuits
support the existence of main and inferaction effects of feam decision scheme and member competence
on feam performance,

Certain resulfs of the Team-Soar simulation provide new insights about team decision making, which can
be tested against human subjects or empirical data.

* The present research has been conducted by the Bisa Research Grant of Keimyung University in 1998.
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I. Introduction

Teams are becoming increasingly important to
modern organization. Nowadays, many organi-
zations are using teams for different reasons,
such as in order to solve exceptional problems
or to carry out special projects.

The popularity of team is somewhat due to
a common belief that making employees work
in teams will achieve high performance. However,
many cases like the incident of the USS Vin-
cennes [Hollenbeck et al, 1997] have showed
that assigning a job to a team doesn’t in and
of itself guarantee success of the work.

Therefore, it is necessary to study team be-
haviors systematically.

Distributed  Artificial Intelligence (DAI), a
subfield of Al, can provide important ideas
and techniques for the study of team behaviors
like team decision making. DAI studies distributed
problem solving by using groups of artificial
agents, whereas team decision making can be
considered to be distributed problem solving by
a group of humans. Therefore, DAI has potential
as a framework for modeling the behavior of
teams.

Up to now, however, only a small number of
computer team models, for example, TEAMWORK
model [Doran, 1985], i-AGENTS model [Jin and
Levitt, 1993], SYBORG model [Yoshimura et
al, 1994], have been used for team study. In
particular, relatively few, if any, distributed Al
models have been used for team research due
to the interdisciplinary nature that requires
knowledge both about the scientific area (ie.,
management, especially group dynamics) and
the engineering area (i.e., distributed Al). The
objective of this paper is to show how team

study can be advanced with the aid of the
current computer technology. Especially, by
introducing a simulation experiment that uses
a distributed AI model of team called "Team-
Soar", this paper illustrates how beneficial to
adopt the interdisciplinary approach in studying
team behaviors.

The remainder of this paper is organized as
follows: In the next section, we examine what
distributed Al is and why the technique is
good for team study. Section III introduces
Team-Soar model and explains how it models
a naval carrier team. Section IV describes a
simulation experiment of Team-Soar and an
analysis of the result. In Section V, contribution
of this research is discussed as a conclusion.

II. Distributed Al as a Paradigm
for the Modeling of Teams

2.1 Definition

DAI is a subfield of Al that has focused on
how a collection of artificially intelligent agents in
a problem-solving situation can interact effectively
to achieve a common set of global goals [Weiss,
1999; Ferber, 1999; Kraus, 1997; Chaib-Draa et al.,
1992; Bond and Gasser, 1988b]. As computers
have become more sophisticated, the demands
for coordination and cooperation have become
more critical. To cope with the demands, research
in the area of DAI has studied computer me-
chanisms by which multiple intelligent and
autonomous agents can coordinate and cooperate
effectively [Sen, 1997].

DAI are divided into the following three
areas; parallel Al (PAI), distributed problem solving
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(DPS), and multi-agent systems (MAS). Parallel
Al achieves a linear speed-up by applying
multiple processors concurrently to a given
problem [Griffiths and Purohit, 1991; Bond and
Gasser, 1988b]. While studies in distributed
problem solving consider how the work of
solving a particular problem can be divided
among a number of agents, studies in multi-
agent systems are concerned with coordinating
intelligent behavior among a collection of auto-
nomous intelligent agents [Bond and Gasser,
1988b; Griffiths and Purohit, 1991]. The auto-
nomous intelligent agents must reason about
the processes of coordination among themselves.
The area of multi-agent systems has been won
more popularity than the other two areas owing
to that multi-agent systems are able to operate
without direct human intervention, able to improve
over time, and able to communicate with other
agents. To reflect the focus of interest of the
active researchers, the area of DAI often uses
the name of multi-agent systems to indicate
the filed as a whole [Sen, 1997].

2.2 Analogies between Human Teams
and DAl Systems

A DAI system is a loosely coupled network of
individual artificial agents or processes interacting
together to solve problems that are beyond
their individual capabilities. There are analogies
between human teams and DAI systems. Both
human teams and DAI systems are arrange-
ments of parallel distributed intelligence for
multi-agent problem solving [Masuch, 1992;
Gasser and Hill, 1990]. Like a DAI system, a
team can be thought of as a network that

consists of agents as nodes and communication
channels as connections between these nodes.
Furthermore, the properties of both human
teams and DAI systems are not derivable or
representable solely on the basic properties of
their component members or agents [Chaib-
Draa et al, 1992]. They both display social
behavior [Carley and Newell, 1994]. They even
face the same problem of allocating tasks,
resources, and information to sets of intelligence
[Fox, 1981].

These analogies and others support the argu-
ment that DAI systems could serve as models
of human teams for supporting theoretical
work [Masuch, 1992, Huberman, 1992; Gasser
and Hill, 1990]. In this sense, DAI is the
experimental branch of organizational science
[Crowston, 1992].

2.3 DAl and Team Decision Making

A DAI system can be used to model the
distributed problem-solving process of a team
like team decision making, just as an Al system
can be used to model the problemrsolving process
of an individual human [Shaw et al,, 1991; Griffiths
and Purchit, 1991]. DAI models provide symbolic-
level frameworks that can capture the distribu-
tion of processing or computation embedded
in team decision making [Chandrasekaran, 1981].

Team decision making is a macro-level pheno-
menon that emerges from micro-level interactions.
DAl modeling is a promising approach for
studying the micro-macro link, because DAI
systems can explore the global behavior of a
collection of agents based on the local knowledge
and local procedures of each agent [Huberman,
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1992]. One of the most important features of
DAI models is that each independent compu-
tational unit has its own local knowledge and
controls its own execution. Therefore, DAI systems
can model the problem-solving behavior of a
team based on the local knowledge and local
problem-solving activities of each individual
member.

DAI can provide a means of studying a
mudtiplicity of factors that influence team decision
making,

Traditional research on teaming typically
employs surveys or other techniques for gathering
anecdotal evidence [Katzenbach and Smith, 1993],
or uses experimental methods in quasi-laboratory
settings [Hollenbeck et al.,, 1997]. Both approaches
have their benefits: surveys can help identify
research questions or hypotheses, while experi-
mental methods can provide in-depth under-
standing of one or two factors in team decision
making. However, simulations using artificial
agents provide a setting where a multiplicity of
theoretic constructs, such as the characteristics
of the agents and their interactions, can be
incorporated into models and assessed by
simulation. In addition, DAI models of team
decision making require detailed descriptions
of members’ cognition, interaction, group design,
and task [Carley and Prietula, 1994 Jin and Levitt,
1993]. Hence, DAI models enable researchers
to study the complex relations that characterize
teams analytically.

So far in this section of the paper, we have
reviewed the literature of DAI field. For further
review of DAI literature including an architecture
of DAI systems, see Weiss [1999), Ferber [1999],
Sen [1997], Bond and Gasser [1992, 1988a], Gasser
and Huhns [1989], and Huhns [1987).

. Team-Soar

"Team-Soar" is a distributed Al model of a
naval command and control team consisting of
four members who have different expertise and
cooperate interactively to accomplish aircraft
identification tasks (i.e.,.identifying the threat
level of aircraft). For the team model, four Al
agents are realized on a SUN machine by using
a multi-agent Soar technique developed for
distributed problem solving [Laird et al., 1993].
In Team-Soar, the four individual Al agents
are interconnected to represent a commumnication
channel between team members.

The team being modeled by Team-Soar consists
of Commanding Officers (CO) of four units in
a naval carrier group. The leader is the CO of
the Aircraft Carrier (modeled by CARRIER-Soar).
The other members are the CO of a Coastal
Air Defense unit (modeled by CAD-Soar), the
CO of an AWAGCs air reconnaissance plane
(modeled by AWAC-Soar), and the QO of an Aegis
Cruiser (modeled by CRUISER-Soar). Figure 1
shows Team-Soar that models four roles of the
naval command and control team and their
major - activities. In the model, aircraft are
tracked by radar and evaluated in terms of
nine attributes as shown on the bottom of the
picture in Figure 1. In the figure, the lines from
members to attributes show which members
are expertise on what attributes.

To participate in a team decision, each
member first makes its own judgment about
the best course of action by using the infor-
mation available to it, then recommends this
judgment to the leader, that is, CARRIER. To
make a judgment, a member first interprets
the raw data for the attributes and evaluates
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<Figure 1> Team-Soar that models a naval carrier team
of four experts

each attribute on a scale of zero to two. In the
evaluation, the numbers, zero, one, and two
mean "non-threatening,” "somewhat-threatening,”
and "very-threatening" respectively. A member
also may ask other

members for their evaluations of certain attri-
butes. When a member has made the required
evaluations, it then makes a judgment about
which of seven possible courses of action to
recommend to the leader. The seven possible
courses of action range in degree from Ignore,
which has a value of zero, to Defend, which
has a value of six [Hollenbeck, et al., 1995].
Intermediate actions on this scale are Review
(1), Monitor (2), Warn (3), Ready (4), and Lock-
on (6). Upon receiving all other members’
judgments, the leader makes a team decision
based all members’ judgments, including its
own (CARRIER's).

In Team-Soar, each Al agent of the model,
which represents an individual team member, is
a theory-based cognitive model of human called
Soar [Laird et al, 1993]. Soar is especially used
for modeling the individual team members

because decision-making involving aircraft iden-
tification is a cognitive work. A candidate model
for Newell's (1990) unified theories of cognition,
Soar models the human cognitive capabilities
of knowledge-based problem solving, learning,
and interacting with the external environment.

Soar also incorporates into its model the view
of the human as a general problem solver
{Newell and Simon, 1972), a symbol system
{Newell, 1990; Newell and Simon, 1976}, and a
knowledge system (Newell, 1990).

As modeled by Soar, each member maintains
both long-term memory and working memory.
All knowledge, including expertise, is stored
in each member’s long-term memory in the
form of a production, that is, an "if-then" rule.
Working memory, on the other hand, keeps only
the knowledge that is relevant to the current
cognitive activity of the member. The content
of working memory is decided by a decision
mechanism using the preference concept and
is selected from the knowledge in long-term
memory. The preference concept is part of the
Soar architecture. See work by Laird and his
colleagues (1993) for a detailed description of
Soar’s architecture.

Soar implements the idea of the problem
space hypothesis (Newell, 1993; Newell, 1980)
arguing that all human symbolic goal-oriented
behavior can be conceived of as a search in a
problem space. According to the problem space
paradigm, the Soar model can be described in
terms of goals, problem spaces, states, and ope-
rators (Laird, et al,, 1993). Being modeled by a
group of Soars, the Team-Soar model incorporates
the problem space paradigm as follows. During
the team decision making, each member in
Team-Soar develops two problem spaces: a team
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problem space and a member problem space. In the
team problem space, the member tries to achieve
_the team goal; in member problem space, the
member tries to achieve the member goal. The
team goal is to make the team decision correctly,
whereas the member goal is to make a good
recommendation to the leader. These goals are
achieved by applying appropriate operators to
states in the corresponding problem spaces.

When a team member first perceives an uni-
dentified target, the member develops its own
version of a team problem space in its working
memory. Then the initial state within the member's
team problem space is refined with group know-
ledge (ie., the metalevel knowledge about group
factors), other members, and other member’s
expertise. After refining its team problem space,
each member develops an individual member
goal as a subgoal of the team goal in accordance
with its position on the tearn, and then develops
its member problem space. The member who
first spotted the unidentified target announces the
appearance of that target to the other members
(announce-target operator). When receiving this
announcement, the other members follow the
same process of problem space development
as the first member, except for the announcing
activity.

In its member problem space, each member
reads the raw values of attribute data (read-
attribute operator), evaluates the values (evaluate-
attribute operator), asks other members their
evaluations of some attributes (ask-evaluation
operator), or reports its evaluations to other
members upon request {report-evaluation). After
collecting all required information, the member
makes its judgment (make-member-judgment
operator), and then returns to the team problem

space.

When returning to its team problem space,
the leader asks the other members for their
judgments (ask-member-judgment operator), and
the other members report their judgments to
the leader (report-member-judgment operator).
Upon receiving all others’ judgments, the leader
makes a team decision by using a team decision
scheme (make-team-decision operator), and an-
nounces the decision to all other members
(announce-team-decision operator). Then all
members close their team problem spaces and
wait for a new task. Refer to "Team-Soar: A
Model for Team Decision Making" [Kang et
al., 1998] for more description of Team-Soar
model.

V. Simulation Experiment

Using a DAI modeling technique, Team-Soar
permits researchers to explore different combi-
nations of modeling factors and allows them
to analyze the modeling subject systematically.
In order to show how DAI models can provide
insights about team decision making, a simulation
experiment done with Team-Soar will be in-
troduced in this section.

4.1 Experimental Design

Researchers have recognized from human
experiments that the use of different group
decision schemes and / or the presence of in-
competent team members may result in different
performance levels [Hollenbeck et al, 1995;
Miller, 1989]. However, no research has been
reported that examines the interaction effects of
group decision schemes and member competence

110 ZYELET

H102 m3%



Yol g o NBF| B A7

on group performance. Therefore, it is meaningful
to examine the effects on team performance
systematically by using a simulation experiment.
For the reason, a simulation experiment was
performed to examine the role of different
team decision schemes in alleviating the effect of
member incompetence on team performance.
In this simulation experiment, team performance
was measured by two standards of team effec-
tiveness: decision deviation and disaster rate. Decision
deviation refers to the deviation of the decision
that the team made from the correct decisions,
which are predetermined by the Team-Soar
Table 1 A Summary of the Simulation Experiment
Design, the better the team’s performance, that
is, the better the team’'s decision accuracy.
Disaster rate was a function of the frequency
of decisions that were off by four or more
points from correct decisions [Hollenbeck, et al,,
199]. The simulation experiment used a 4 x5
design where team decision scheme and member
competence were manipulated. Each of the
twenty team models made 10,000 team decisions.

To make a team decision, the leader uses a
decision rule (i.e., decision scheme) that provides
a mechanism of combining member judgments
into a team decision. Four team decision schemes
were examined in this experiment: mugjority win
(tie breaker: leader/CARRIER), majority win (tie
breaker: CAD), average win (fixed weight), and average
win (dynamic weight) schemes. In majority win
schemes, the team’s decision was determined
by which recommendation was made by the
majority of the team members. When there
was a tie, the leader (CARRIER) either followed
its own judgment (majority win with tie breaker
leader) or followed the judgment of the member
CAD, who had accessed more information than

the leader (majority win with tie breaker CAD).
In the average win schemes, a rounded-off average
of all the weighted member judgments deter-
mined the decision. To compute this average,
for both fixed and dynamic versions of the
average win scheme, member judgments were
converted into quantitative values and weighted
appropriately according to the leader’s assessment
of the quality of each member’s judgment.

This assessment was based on the member’s
expertise or past performance. In the fixed
weight version of the average win scheme, the
leader assigned a fixed and equal weight to
each member's judgment; this weight was
used for all decision tasks. In the average win
scheme with dynamic weights, the leader, for
each task, assigned weights to each member’s
judgment by considering past performance
history of the member up to the decision point.
Therefore, in the decision scheme, the dynamic
weight assigned to a member’s judgment was
derived from the member’s performance rating
at that point in time. A member’s performance
rating consisted of points accrued from the
correctness of its judgments on previous decision
tasks: each member received seven points
whenever its judgment was correct, six points
whenever its judgment was off by one from
the correct decision, and so forth.

Two different types of members can be iden-
tified according to their competence; competent
and incompetent members. Competence members
are agents who use available information rationally
to make their judgments. They combine evaluations
of attributes to produce a score, then make
member judgments based on that score. In-
competent members act exactly the same as
competent members except that they make
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Team-Soar consisting of 4 Al agents

decision deviation and disaster rate
45 (= 4 levels of factor 1X5 levels of factor 2)

team decision scheme (4 levels)

- mejority win (tie breaker: leader/CARRIER)
- majority win (tie breaker: CAD)

- average win (fixed weight)

- average win (dynamic weight)
member competence (5 fevels)

- team with no incompetent member

- team with one incompetent member

- team with two incompetent members
- team with three incompetent members
- team with four incompetent members

factor 2

their judgments by randomly selecting one
simulation experiment, member competence was
manipulated at five levels by changing the
number of incompetent members from zero to
four in the four-member teams. The design of
the simulation experiment is summarized in
Table 1.

4.2 Hypothesis Tests and Results

To statistically examine the effects of team
decision scheme and member competence on
team decision deviation, the following three
null hypotheses were tested:

(1) the four team decision schemes affect team
decision deviation equally;

(2) the five different levels of member compe-
tence affect team decision deviation equally;
and

(3) there are no interaction effects of the decision
scheme and the level of member competence
on team decision deviation.

Two-way ANOVA was used for the hypothesis
tests. All three null hypotheses were rejected
at the .0001 level of significance. Thus, the test
results strongly support the existence of main
and interaction effects of team decision scheme
and member competence on teants mean decision
deviation,

Since interaction effects were significant, Tukey's
studentized range test was performed at the
0.05 level of significance in order to determine
which combinations of decision scheme and
member competence differ significantly. Note
that because each team model of the simulation
experiment was configured with a combination
of the two decision variables, the total number
of observations for both ANOVA procedure
and Tukey test was 200,000 (= 4X5x10,000).
Tukey’s test results are shown in the second
column of Table 2. According to the Tukey test,
within a team decision scheme, team decision
deviation increased as more incompetent members
were added to teams.

By inspecting members’ performances in Table
2, we can tell which team positions in each
configuration were occupied with incompetent
members because performences by any incompetent
members result in values above 2.25. According
to Table 2, for teams with one incompetent
member, AWAC is the position occupied by
the incompetent member. For teams with two
incompetent members, the AWAC and CRUISER
positions are incompetent. For teams with three
incompetent members, the AWAC, CRUISER
and CAD positions are incompetent. For teams
with four incompetent members, all positions
are filled with incompetent members.

To examine the effects of team decision scheme
and member competence on disaster rate, the
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hypothesis tests were repeated, substituting di-
saster rate for team decision deviation. The main
and interaction effects of team decision scheme
and member competence on mean disaster rate
were found to be significant at the 0.0001
level. Tukey’s test performed at the 0.05 level
of significance (see the last column of Table 2)
showed that within a team decision scheme,
disaster rate increased as more incompetent
members were added to teams.

4.3 Discussion

The simulation experiment generated same
kinds of data as human experiments, which
can be analyzed in the same ways as analyzing
human data. See Table 2 in order to appreciate
the data from the simulation experiment. Figure 2
is provided to aid interpretation of the data.

Figure 2 part (a) shows that the two majority
win schemes worked relatively well until in-
competent members comprised the majority of
the team. In particular, the performance of teams
using the majority win scheme with CAD as a
tie breaker declined dramatically after the position
of CAD was taken by an incompetent member.
This decline occurred because leaders followed
CAD's judgments in making team decisions
whenever there was a tie between members’
judgments. The results indicate that the choice
of the right team decision scheme is contingent
upon the level and distribution of member com-
petence. That is, the effectiveness of different
schemes depends not only on the number of
incompetent members, but also on the positions
occupied by the incompetent members.

According to part (a) of Figure 2, decision
deviation for teams using the average win

scheme with fixed weight increased linearly as
incompetent members increased one by one.
Further, except for teams consisting of all in-
competent members, this team decision scheme
was not effective with the presence of incompetent
members, because this scheme assigns incompetent
members the same weight as other members.
However, for teams with all incompetent members,
this scheme is more effective at reducing the
decision deviations from correct answers than
any other scheme because it makes team decisions
by taking an average member’s judgments.

The gaps in mean decision deviation between
teams using different team decision schemes at
the same member competence level increased as
the number of incompetent members increased
until all members in the teams became incom-
petent members (see part (a) of Figure 2). The
same is true with disaster rate (see part (b) of
Figure 2). This reflects that the use of an appro-
priate team decision scheme becomes more im-
portant as the number of incompetent members
increases, provided that at least one of its
members is competent. The results also indicate
that a good team decision scheme can provide
a buffer for the effect of incompetent members
on team decision deviation and disaster rate.
For example, the performances of teams using
the average win scheme with dynamic weight
did not decline significantly as the presence of
incompetent members increased until all members
became incompetent.

Except for the extreme case in which all
members are incompetent, the average win
scheme with dynamic weight is the best team
decision scheme in the presence of incompetent
members when team performance is measured
in terms of both team decision deviation and
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disaster rate (see Figure 2). Even in the extreme
case, the performance of the teams using the
dynamic weight scheme are close to the perfor-
mance of teams using the average win scheme
with fixed weight, which is the best scheme in this
extreme case. Therefore, team decision schemes
similar to the dynamic weight scheme that con-
sider members’ past performance history are
recommended, especially when the number and
position of incompetent members in a team
change dynamically. Theoretically, however, to
make team decisions when all members are
incompetent, it is better to use the fixed weight
scheme instead of the dynamic weight scheme
because the fixed weight scheme does not require
the extra memory and calculations needed to
consider past performances.

It is easy to think, mistakenly, that the selection
of a team decision scheme does not matter when
all members are incompetent, that is, when all
members make their judgments by random
selection. Surprisingly, this experiment revealed
that the selection of the right team decision
scheme is still important even in this extreme
situation. In this extreme situation, the use of the
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average win scheme with fixed weight signifi-
cantly improved the team’s decision accuracy
(i.e, reduced the team’s decision deviation) and
disaster rate when compared to the results of
using the two majority win schemes (see Figure 2).
Particularly in comparison to the disaster rates
produced by the majority win schemes, the average
win scheme with fixed weight decreased the
mean disaster rate by about half. However, it
is not obvious immediately why this happens.
Further research will be necessary to explain
why.

In general, the results analyzed in terms of
disaster rate coincided with the results analyzed
in terms of team decision deviation. However, the
results analyzed with respect to team decision
deviation did not always match with the disaster
rate results. For example, the mean decision
deviations for teams using the average win
scheme with fixed weight were the worst, or
at least worse than teams using the majority
win scheme with leader as a tie breaker when
the teams contained one to three incompetent
members; nevertheless, the mean disaster rates

of the teams using the average win scheme
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<Figure 2> The impact of member competence on (a) team decision accuracy and (o) disaster rate at different team

decision schemes
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with fixed weight were significantly lower than
the latter teams’ (see Figure 2). In fact, unlike
the cases of team decision deviation where none
of the average win schemes or the majority
win schemes were dominant, the two average
win schemes outperformed the two majority win
schemes for all levels of member competence
in the case of disaster rate. The reason is that
the average win schemes try to approach the
correct decisions by reducing the deviations of
their decisions from the correct ones as much
as possible by taking an average of members’
judgments. On the other hand, the majority
win schemes try to find out the correct decisions
directly by following the majority judgments,
while they do not give much attention to the
deviations if they fail. Therefore, teams using the
majority win schemes tend to produce more
disasters than teams using the average win
schemes.

It is necessary to be aware of a limitation
when interpreting or applying the results of
the Team-Soar simulation. Team-Soar models a
particular type of team, which is a decision-
making team with one level of hierarchy and
distributed expertise. Therefore, some of the
results may be only applicable to this special
type of team.

V. Conclusion

The major purpose of this paper was to de-
monstrate the usefulness of DAI models as team
research tools.

To this end, a distributed Al test bed called
Team-Soar was built and results of a simulation
experiment was introduced.

Generally, the results of the Team-Soar simu-

lation met expectations and confirmed previous
findings in the literature. Researchers have recog-
nized that the use of different group decision
schemes may lead to making different decisions,
and, therefore, result in different performance
levels [Miller, 1989]. The results of the Team-
Soar simulation confirmed this result. Generally,
the average win schemes outperformed the majo-
rity win schemes with respect to team decision
accuracy and disaster rate. Researchers have also
found that, in general, organizations perform
better when given feedback if the agents can
learn [Carley, 1991]. In the TeamSoar simulation,
the average win scheme with dynamic weight
is the only team decision scheme that utilizes an
agent who learns from experience: the leader
makes decisions based on team members’ past
performance history. The results of the Team-
Soar simulation support Carley’s finding by
displaying that team models using the average
win scheme with dynamic weight generally
outperformed teams using other team decision
schemes, which did not incorporate an agent who
can learn. Researchers using human experiments
have found that teams that contain an incom-
petent member perform worse than teams that
contain no incompetent members [Hollenbeck
et al., 1995]. The same results were found in
the Team-Soar simulation. In the simulation, a
team’s decision accuracy deteriorated (i.e, a team's
decision deviation increased) as the number of
incompetent members in the team increased.
Certain results of the Team-Soar simulation
provide new insights (i.e., new research propo-
sitions) about team decision making, For example,
the simulation results indicate the interrelation of
team decision scheme with member competence.
According to results, the choice of the right
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team decision scheme becomes more critical
when team contains more incompetent members.
These new research propositions can be tested
against human subjects or empirical data.

For some results of the TeamSoar simulation
are counterintuitive, that is, explanations are not
immediately obvious. For example, it cannot
be explained easily why some team decision
schemes (i.e, average win schemes) are still
more effective than others’ (i.e, majority win
schemes) even when all members make their
judgments by random selection. More research
needs to be done for explaining these kinds of
simulation results.

As a computational model, the Team-Soar
model needs to be validated. In order to validate
the model, we need to identify the goal of the
model first because a computational model should
always be validated for a particular goal or
purpose (Burton and Obel, 1995). According to the
purposes for which the models are formulated,
Cohen and Cyert (1965) classify computational
models of organizational behavior into the
following four categories: descriptive, illustrative,
normative, and man-machine. The goals of de-
scriptive models are to examine why existing
organizations have behaved in particular ways
and to predict how they will behave in the
future. The purpose of an illustrative model is to
explore the implications of reasonable assumptions
about organizational behavior in order to deter-
mine what the world is like when these assump-

tions are true. The purpose of a normative model
is to allow researchers to determine which of
several possible forms of organizations are best
suited to particular goals, whereas the goal of a
man-machine model is to train people to function
better in organizational settings. According to
the classification, Team-Soar corresponds to a
descriptive model, because the goal of the model
is to understand team behavior (i.e, team decision
making). To validate a descriptive model, one can
compare the model’s results with the actual
results made in the organization (Burton and
Obel, 1995). With TearSoar, this means matching
the simulation results with the behavior of
human teams. As described before, some results
of the Team-Soar experiments correspond with
the findings from previous research on human
subjects. The comparison of observed human
team phenomena with the simulation results
provides some degree of validation of the
Team-Soar model. Actually, a number of compu-
tational models has been validated by comparing
their simulation results with built-in theories
or empirical data (Doran, 1985; Lin, 1993).

In conclusion, this paper argues that DAI is
a valuable research tool for studying teams by
illustrating how a DAI model (i.e,, Team-Soar)
can provide deep insights into team decision
making. Indeed, the study of teams can be
progressed by adopting technologies and ideas
from the area of distributed Al
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