i3
4!
O
HL
2t
v
1
o
s
Ha

T M7 M1 200000

A4 e Al LBl A9 A dofe it
M 714

ERAE B tAEe Azl 2o M £5E FYAIN] At A9 A g deje} ARE 2
%ZH Arel Aete A WlUES Atk lE Hate] AA, BAF R A 2" HAHE AN ARE &4
dioje] HE, AlAd deolg] AR £, £78 HA FEE 78tez A A2d F2E AAsAd. 24, 7479
Arlel diet A HArel A 52 7MFAE Fod HA-TTL diAl 71He Aaeisict stdgtog Aerd A 7193
el 7IY(LRU, LFU ol 7ig)el disted 4% H7He sdsto] #gtd 71go] LRU 71 BY) 25%9] A53dS BngeH,
LFU 7Bk 30%2 *L—EOHJ A11E By

m\m

A Caching Mechanism for Remote Queries in Distributed
Directory Systems

Kang-Woo Lee'

ABSTRACT

In this paper, for improving the speed of query processing on distributed directory system, we proposed a caching
mechanism which is store the queries and their results on the remote site objects in the cache of local site. For this,
first, cached information which is stored in distributed directory systems is classified as application data and system
data. And cache system architecture is designed according to classified information. Second, least-TTL replacement
mechanism which uses the weighted value of geographical information and access frequency for replacements are
developed for each cache. Finally, performance evaluations are performed by comparing the proposed caching mechanism
and other mechanisms (LRU, LFU replacement). Our least-TTL mechanism shows a performance improvement of 25%
over the LRU and that of 30% over LFU.

1. Introduction

requested to efficiently manage the large amount of

As the amount of information that is of interest to
users 1s increased exponentially due to the increase
in complexity and size of communication networks,

the need for distributed information repository is

t74 8 9 gt PFEARENGY ws

=T 019999 59 49, AAgE 19999 119 29

distributed data. One of the technologies to meet
the needs of such requirements is the ITU's(Inter-
national Telecommunication Union) X.500 directory
system [6].

The X500 directory system is different from a
general-purpose DBMS in several aspects and thus
can be considered as a special-purpose DBMS. In a

distributed directory system, the stored data is static
in nature with little or no modification.

The information held in the directory is called the
Directory Information Base(DIB). The DIB consists
of entries(or objects) which contain information about
entities. Entities in the DIB are represented by
entries in a global, hierarchical name space called the
Directory Information Tree(DIT). Each object belongs
to at least one object class. The class determines the
attributes that can be present in the object. Each
attribute in an object is composed of a type and one
or more values. For naming service which searches
an object from distributed directory throughout the
world, we must understand the whole organization
of the communication network and estimate a unique
path name of the object or navigate all paths. But it
is difficult for users to know the organization of the
communication network or path names of the objects
in which he/she is interested, and if we do not
know the path name of the object, one must search
many data repositories. In order to solve the above
distributed
descriptive naming service [9]. But descriptive naming
service has low performance. “SEARCH” of X.500 is

the most commonly used descriptive naming service

problem, most current systems use

and global selection query. In order to get the
results of a global selection query, the user must
search thousands of databases [6]. The solution to
low query performance is based on the concept that
the cost for searching a local name can be reduced
by using name caching. But in X.525 recommen-
dation standards, only the data replication scheme is

provided without including the data cache scheme.

2. Related Works

The distributed directory system needs to improve
the present service level by providing information
usability, performance improvement and high con—
viction. This is satisfied with allowing the duplication
of each entry and operational information [6]. The
replication mechanism of the distributed directory

A CHEER] ASHOIAMS B 220l THE JHE 71y 61

system in recommendation of X.525 recommends

master/slave model. This master/slave model is
composed of primary and secondary shadowing methods.
In primary shadowing, master DSA is unique
replication information provider, and slave DSA is
able to read, compare, search and open. All of the
modification operations are performed by master
DSA. In the secondary shadowing, master DSA is
not unique replication information provider, and some
authorized DSAs give modified information to master
DSA. Such a replication method could improve the
system performance, but there are some problems,
such as overload of the master DSA, security and
S0 on.

Many of caching mechanisms improving response
time for user query by reducing overload cost for
holding replications have been studied {1]. The Mariposa
system shows a rule-based modification propagation
method. As strong cache consistency avoidance methods
weak consistency method treats cache information as
hint, and Quasi caching permits an inconsistency
manner [10]. But the modification propagation cost of
strong consistency method is very high, and accuracy
management of weak consistency method is difficult.

Therefore, this paper designs the caching mech-
anism which avoids replication management overload
and holds consistency according to the character-
istics of data. Based on classified cache information,
we design cache system structure and storage structure
of each cache information, and develop a cache man-

agement algorithm for each cache information.

3. Classification of directory information

In this section, for designing an effective caching
information
which is maintained and stored in distributed direc—

tory systems.

mechanism, we analyze the directory

® (lassification according to the properties of di-
rectory information

According to the properties of directory infor—

Ly StZAMExZIEs =X M7 M12(200010

mation, we classify cache information into application
data information, and system data information.
i) Application data information
- directory user information
ii) System data information
directory managing information
- directory knowledge information

- spplementary information

o Classification according to the life time of cache
According to the life time of cache, we classify
cache information into long—term information and
short-term information. When cache replacement is
required, this classification is used to apply a
weighted value of network distance and turn around
time. Information of long distance and long turmn
around time is maintained in the cache longer than
that of short distance and short turn around time. It
reduces heavy traffic of the communication network
by improving the hit ratio of long distance and long

turn around time information respectively.

® Classification according to the consistency of cache
According to the properties of system data
information was maintained in strong consistency or
maintained weak consistency, we classify cache infor-
mation into dynamic information and static infor-
mation.
i) Dynamic information
- network traffic information
- statistics information
- historical data, trend data
- hard-time constraints data
i) Static information
- hardware component of network
- software component of network
- network information for component itself
- soft~time constraints data

(Fig. 1) represents storage caches for classified
information by three classification methods. Espe-
cially, dynamic information, which is stored in the
system data query cache, is stored for maintaining

strong consistency. Maintaining the strategy of cache
information is basically weighted by geographical
information, turn-around time and access frequency.
It's a strategy for the informations of long distance
and turn-around time to maintain in the cache
longer than other informations. So this strategy can
avoid overhead traffic of long-term information by
increasing the hit ratio of long-term information

over short-term information.

Short-term
Information

Long-term
Information

Application Data
Query Cache

Application Data
Information

Application
Data Cache

Directory
Information

Static
Information

Information

System Data
Query Cache

Dynamic
Information

(Fig. 1) Storage caches for classified information

4. Directory caching mechanism

In this section, to reduce the communication over-
head among various DSA’s, the use of cache which
stores repeated query and response will be discussed.

4.1 Application data caching mechanism

The information stored in the application data
cache are composed as foliows : @ application data
such as user name, address, phone number, and fax
numbers which identify the directory’s own facilities.
@ system’s static data subset such as information
about the network, information about network hard-
ware and software, and weak time constraint data.
The user can get the benefit of reduced query
processing time from the application data caching
mechanism which stores the query and their result
into an application data query cache repeatedly. And
not only the query contents but also some additional
information which determines preservation of the
query will be stored into the application data gquery

cache. For example, the entries stored in the
application data query cache are shown in (Fig. 2)
when a query is supplied as “select * from people

where cn = ‘kwlee’ and ¢ = 'kr’”.

M’y iniarmalioanTL] a_t [d_f l tt l a_f l data_ptr]

rveopls \ﬁ)‘ —dl_]

(Fig. 2) Storage structure of application data
query cache

In (Fig. 2), a_t is assigned to the live time of
cach query, d_f stands for the number of search
path chain which describe the location of the given
network configuration so that this is the information
about the process of result searching. ¢ ¢ means
turn-around time and specifies query result retumn time,
a_f describes how often the access has happened
and may be increased each time when a cache hit
occurs on a new query approval. data ptr is the
pointer to the address of actual response data from
given query which is in the application data cache.
Application data cache contents are the results from
the queries such as given in (Fig. 2).

The cache information replacement strategy is based
on Least-TTL replacement technique. The TTL com-

putation is shown as follows.
(1) TTL = a_t+weight-1(d_fi+weight-2(t_t)+a_f
(2) weight-1{d-f) :
if Z}Q,(d—f)/n(Qeurrend— 1, then 1 else 0

—

&

weight-2(t-1)
if 23 QAt— /< Qupren1— 1), then 1 then 0

(4) af: increment value when cache hit happens

Q{d~f) in expression(2) is query distance infor-
mation and Querendd—f) is the distance information of
the current query. @(t-t) in expression(3) is the query
return time and Qarendt-t) is tum-around time of

current query. a_t in expression(l) is a value as-

HE
[z
In
&
tm

=2 AISEOIAM S B2 L0l THEE i 71”53

signed to each entrv in the cache and the initial
value is 1. Weight-1 in expression{1) is determined
from the average of distance information in the
query supplied before, and weight-2 in expression(l)
is determined from the average tum around time of
the query supplied before. a_f in expression(l)

increases each time when a cache hit happens.

Boolean Application_Cache_Replacement()
{
fl CACHE_FULL) then
{ repeat i
TTL(i) = cache_rec(i)a_t + WEIGHTI(cache_rec(i).d_f) +
WEIGHTZ(cache_rec(i).t_t) + cache_red(i).a_f
until(i>n) /* end of cache_rec */
DELETE(MIN(cache_rec(TTL)))
£
STORE_CACHE(new_cache_rec)
EXIT
)

(Fig. 3) Replacement algorithm of application
data cache

Eventually, the cache entry whose TTL value is
the least will be replaced and thrown out, and the
full algorithm is shown in (Fig. 3). Whenever new
information is added into the cache, the TTL of all
the cache entries should be computed and updated.

42 System data caching mechanism

The informations stored in the system data query
cache are queries about dynamic information such as
network traffic information, statistics information,
temporal information, trend information, the average of
network load information and strong time constraint
data etc. Especially, because the data stored in the system
data query cache preserves strong consistency, a
new access is performed using the query information
cached. Namely, instead of the query result not
being stored in cache, only the information about the
query is stored. So, in case that hit is performed a
new access is used. (Fig. 4) shows the storage
structure of the entry which is stored in the system

data query cache.

M ost=mEBEHeEs =2X] M3 M12e000.0

]queryin(om\ation [TTL| a_t } d_f | tt l a_f I a_p '

setaon Ltnhuent teondriions}

R N = e R e e

(Fig. 4) Storage structure of system
data query cache

The contents of a entry are similar to those stored
in the application data query cache, but the system
data query cache has DSA access point(a_p) which
includes the information of a entry instead of a
pointer to the query result. So, in case the query is
hit, data access is performed using the access point.
The replacement algorithm of the system data cache

is similar to that of the application data cache.

5. Performance measurements

In this section, we compare the Least-TTL tech-
nique of the data cache developed in section 4 with
the most general method LRU (least recently used)
technique and LFU (least frequently used).

5.1 Simulation model

Basically the simulation was performed through
the preprocessor and the simulator. The preprocessor
is separated into the extraction part of the trace and
the filter part to extract all needed trace data. The

entire configuration is shown in (Fig. 5). The pre

——n

Sprite trace

Trace extraction

filter

11
iF

Simulator LRU, LFU system
Buffer cache

(==

_J

Pre processor

—

i

(Fig. 5) Configuration of simulation

processor extracts needed factors then translates
for the simulator. It is performed through detail
phases in the preprocessor phase. Translated logical
block number transfers to the buffer cache. It is
managed in the part of the buffer cache. The
replacement algorithm of the buffer cache can use
selectively proposed Least-TTL, LRU, and LFU
techniques.

If the request block exists in part of the buffer
cache isn't returned to the physical bilock but just
returned to a signal which exists in buffer cache. If
the requested block does not exist it sends a read
signal to the disk module. This request gets a
response time in the disk module.

5.2 Comparison of replacement techniques of cache

The simulation method used in performance mon-
itoring is a trace-driven method, and the trace data
is a Sprite trace [5]. The Sprite trace was developed
at Berkeley University to monitor the shape of access
in a distributed environment. We simulate using both a
Sprite trace and libraries provided together and
retrieve the parameter needed. This simulation was
experimented on SUN SPARC 20 and each module
was implemented in C. And our trace data used
July’s trace of six traces in 1994 [5).

(Fig. 6) shows the result of the performance
analysed between the Least-TTL method and LRU
method. The Least-TTL method shows the perfor-
mance improvement of 22% more than the LRU
method.

©
£ 3000000

%2m.%‘v

£ 2000000 —+—LRU
e

50 100 200 300 400 500 600 70O cache size

(Fig. 6) Performance result of proposed algorithm
and LRU algorithm

{Table 1) Performance analysis table of proposed
mechanism and LRU mechanism

cache size 50 200 400 600
LT 1.9 557 10.59 1548
least- ST 8.21 9.66 10.73 1097
TTL HR 10.2 1523 21.32 26.45
RT 3002567 | 2627722 | 2193425 | 1877580
LT 2 350 4.46 5.82
ST 10.53 13.47 16.60 1966
HR 1253 16.97 21.06 25.48
RT 3005185 | 2919445 | 2799947 | 2647890

LT : hit ratio of long-term information
ST : hit ratio of short-term information
HR : hit ratio of total

RT : response time

LRU

o 3500000
£ WLW:‘
g o ~—
2000000 —e—LFU
g 1500000 -\.\- -~ Least-TTL
1000000
500000
[}

50 100 200 300 400 500 600 700 cache size

(Fig. 7) Performance result of proposed algorithm
and LFU algorithm

(Table 2> Performance analysis table of proposed
mechanism and LFU mechanism

cache size 50 200 400 600
LT 1.9 557 10.59 1548
least- ST 8.21 9.66 10.73 1097
TTL HR 102 1523 21.32 2645
RT 3092567 | 2627722 | 2193425 | 1877580
LT 3.77 492 5.58 6.61
ST 16.32 19.42 21.17 2334
HR 20.09 24.32 26.75 3045
RT 2852489 | 2703099 | 2619803 | 2492057

LEFU

(Fig. 7) shows the result of the performance ana-
lysed between the Least-TTL method and LFU
method. The Least-TTL method shows the perfor-
mance improvement of 35% than the LFU method.
<Table 1> and <Table 2> are results of the perfor-
mance analysis for the hit ratio of long-term information,

the hit ratio of short-term information, the total

o TI™MER] AL-OIMO] J23 Zoltl THet i 71y 55

hit ratio and response time by increasing cache size.

53 Cache size

For procedure optimal cache size in distributed
directory environments we simulate response time
using in the front section. In (Fig. 8), we show de-
creasing ratio of response time which reduces rapidly
between 2000 and 2500. So optimal cache size is
between 2000 and 2500.

3000000
= 2500000
§ 2000000
£ 1500000

1000000

500000

PP P FPF P

cache size(Kbyte)

£

(Fig. 8) Performance resuit of proposed algorithm
and LFU algorithm

6. Conclusion

The paper designs a caching mechanism that
improves the query performance in a distributed
directory environment by storing the query and results
of remote site objects in the cache query request
site. The main properties are summarized as follows.
First, we classify the information stored and managed
in distributed directory systems as application data,
and system data. Second, we develop the ljfetixne
period in the cache and the lifetime period criteria of
the cache which classifies the long—term information,
short-term information, dynamic information and static
information. Third, we designed the structure of the
cache system and the storage structure of the clas-
sified cache information. Fourth, we propose the
Least-TTL algorithm which used weighted value on
the geographical information and the access frequency
as a replacement algorithm of the data cache. Finally,
we showed a performance improvement using the

proposed caching mechanism compared with LRU

5 ot=SEMEEe =R M7 H1E=2000.0

mechanism, through performance evaluation.

References

[1] R. Alonso, D. Barbara, H. Garcia-molina, Data
Caching Issues in an Information Retrieval System,
ACM Transactions on Database Systems. Vol.15,
No.3, Sept. 1990, pp.359-384.

[2] Matthew Addison Blaze, Caching in Large-Scale
Distributed File Systems, Ph.D. Thesis, Univer-
sity of Princeton, January 1993.

[3] Jean-Chrysostome Bolot, Hossam Afifi, Evaluating
Caching Schemes for the X.500 Directory System,
The 13th International Conference on Distrib-
uted Computing Systems, Pittsburgh, Pennsyl-
vania, May 25-28, 1993, pp.112-119.

[4] James Gwertzman, Autonomous Replication in
Wide-Area Internetworks, Ph.D. Thesis, Univer—
sity of Harvard, April 1995.

[5] J. H Hartman, Using the Sprite File System
Trace, Berkeley University, 1993.

[6] ITU, The Directory : Recommendations X.500, X.501,
X509, X511, X518 X519, X520, X521, X.525,
ITU Blue Book, 1991.

[71 K. W. Lee, J. H Lee, H C. Lim, A Cache
Mechanism for Distributed Directory System,
Proceedings of the 22 KISS Fuall Conference,
Vol.23, pp.213-216, 10. 199%.

[8] B. Clifford Neuman, Scale in Distributed Systems,
Readings in Distributed Computing Systems, IEEE
Computer Society Press, 1994.

[9] Ordille, J. J. Descriptive Name Services for Large
Internets, Ph.D. Thesis, University of Wisconsin,
Nov. 1993:

[10] D. B. Terry, Caching Hints in Distributed Systems.
IEEE Transactions on Software Engineering,
Vol.SE-13, No.1, Jan. 1987.

[11] Brent Ballinger Welch, Naming, State Manage-
ment, and User-Level Extensions in the Sprite
Distributed File System, Ph.D. Thesis, Univer-
sity of California at Berkeley, 1990.

[12] Craig Hunt, TCP/IP Network Administration,
O'Reily & Associates, Inc. 1992.

o & %

e-mail : kwlee@tiger.seonam.ackr

19879 FAdigtw AAA N
Z4(e18Ah

1989 A=dista AAA NG
EH4(FHA

1997 Z-o sk ALt
Z (o] 8hkAL

1994 ~E@ A st FFEFRTANER 205

T Eok 24 HlojEHjols BAAAE, AAXF o

o] gj o]

