Fabrication of Semiconductor Gas Sensor Array and Explosive Gas-Sensing Characteristics

반도체 가스 센서 어레이의 제작 및 폭발성가스 감응 특성

  • Lee, Dae-Sik (School of Electronic & Electrical Engineering Kyungpook National University) ;
  • Jung, Ho-Yong (School of Electronic & Electrical Engineering Kyungpook National University) ;
  • Ban Sang-Woo (Sensor Technology Research Center, Kyungpook National University) ;
  • Lee, Min-Ho (Sensor Technology Research Center, Kyungpook National University) ;
  • Huh, Jeung-Soo (Metallurgical Engineering, Kyungpook National University) ;
  • Lee, Duk-Dong (School of Electronic & Electrical Engineering Kyungpook National University)
  • 이대식 (慶北大學校 電子電氣工學部) ;
  • 정호용 (慶北大學校 電子電氣工學部) ;
  • 반상우 (慶北大學校 센서기술연구소) ;
  • 이민호 (慶北大學校 센서기술연구소) ;
  • 허증수 (慶北大學校 金屬工學科) ;
  • 이덕동 (慶北大學校 電子電氣工學部)
  • Published : 2000.11.01

Abstract

A sensor array with 10 discrete sensors integrated on a substrate was developed for discriminating the kinds and quantities of explosive gases. The sensor array consisted of 10 oxide semiconductor gas sensors with $SnO_2$ as base material and had broad sensitivity to specific gas. The sensor array was designed with uniform thermal distribution and had also high sensitivity and reproductivity to low gas concentration through nano-sized sensing materials with different additives. By using the sensitivity signal of the sensor array at $400^{\circ}C$, we could reliably discriminate the kinds and quantities of explosive gases like butane, propane and methane under the lower explosion limit through the principal component analysis (PCA) method.

폭발성 가스의 종류 및 그 양을 검지하기 위한 10개의 개별 센서가 한 기판위에 집적된 센서어레이를 개발했다. 이 센서어레이는 각종 가스에 대해 다양한 감도 패턴을 가지며, $SnO_2$를 모물질로 하는 10개의 산화물 반도체 가스센서로 구성하였다. 나노사이즈이며 큰 비표면적을 가진 모물질에 서로 다른 첨가물을 첨가하여 감지물질를 제작함으로써 저농도에 대한 감도 및 재현성을 높였고, 센서어레이 전반에서 균일한 온도 분포가 되도록 설계하였다. $400^{\circ}C$에서 동작하는 센서어레이로부터 얻은 감도를 이용하여 주성분 분석 기법을 통해 폭발 하한값의 범위에서 부탄, 프로판 그리고 메탄 등과 같은 폭발성 가스의 종류 및 양을 신뢰성 있게 식별할 수 있었다.

Keywords

References

  1. Noboru Yamazoe, Norio Miura, Development of gas sensors for environmental protection, Proc. of Int. Conf. on Electronic Components and Materials, pp. 1-6, 1992 https://doi.org/10.1109/95.390298
  2. H. Baltes, W. Gopel, Sensors Update, Vol 2, VCH, p, 2-36, 1996
  3. S. Zarcomb and J.R. Stretter, Theoretical basis for identification and measurement of air contaminants using ana array of sensors having partially overlapping sensitivities, Sensors and Actuators, vol.6 pp.225-243. 1984 https://doi.org/10.1016/0250-6874(84)85019-2
  4. K. Persaud, G.H. Dodd, Analysis of discrimination mechanics in the mammalian olfactory system using a model nose, Nature(London), 299 (1982) 352-355 https://doi.org/10.1038/299352a0
  5. J. W. Gardner and P. N. Bartlett, Ed., Sensors and Sensory systems for an electronic nose, NATO Advanced Research Workshop, Reykjavik, 1991
  6. J. W. Gardner and P. N. Bartlett, Monitoring of fish freshness using tin oxide sensors, Sensors and Sensory Systems for an Electronic Nose, Kluwer Academic Publishers, pp. 257-272, 1992
  7. H. Nanto, K. Kondo, M. Habara, H. Nakazumi, Identification of aroma from alcohols using a Japanese-lacquer-film-coated quartz resonator gas sensor in conjunction with pattern recognition analysis, Sensors and Actuators B, vol. 35-36, pp, 183-186, 1996 https://doi.org/10.1016/S0925-4005(97)80051-2
  8. A. Ikegami and M. Kaneyasu, Olfactory detection using integrated sensor, Proc. 3rd Int. Conf. Solid-State Sensors and Actuators(Transducers 85), Philadelphia, PA, U.S.A., June 11-14, pp. 136-139, 1985
  9. M. C. Horrillo, J. Getierrez, I. Sayago, Measurements of VOCs in soils through a tin oxide multisensor system, Sensors and Actuators B 43 pp.193-199, 1997 https://doi.org/10.1016/S0925-4005(97)00153-6
  10. B. Bott and T.A. Jones, The use of multisensor systems in monitoring hazardous environments, Sensors and Actuators, vol.9, pp 19-25, 1986 https://doi.org/10.1016/0250-6874(86)80003-8
  11. W. P. Carey, K. R. Bebe ad B. R. Kowalski, Multicomponent analysis using an array of piezoelectric crystal sensors, Anal. Chem., vol. 59, pp. 1529-1534, 1987 https://doi.org/10.1021/ac00138a010
  12. P. Althainz, J. Goschnick, S. Ehrmann, H.J. Ache, Multisensor microsystem for contaminants in air, Sensors and Actuators B 33, pp. 72-76, 1996 https://doi.org/10.1016/0925-4005(96)01838-2
  13. H.-K. Hong, H.-W. Shin et al. Gas identification using micro gas sensor array and neural-network pattern recognition, Sensors and Actuators B 33, pp.68-71, 1996 https://doi.org/10.1016/0925-4005(96)01892-8
  14. Henry Baltes, Dirk Lange, Andreas Koll, The electronic nose in Lilliput, IEEE Spectrum September, pp. 35-38, 1998 https://doi.org/10.1109/6.715182
  15. C. Xu, J. Kurokawa, N. Miura, N. Yamazoe, Stabilization of $SnO_2$ ultrafine particles by additives, J. Mater. Sci., 27, pp. 963-971, 1992 https://doi.org/10.1007/BF01197649
  16. C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Relationship between Gas Sensitivity and Microstructure of Porous $SnO_2$, Denki Kagaku, 58(12), 1990
  17. D.-D. Lee, W.-Y. Chung, Gas-sensing characteristics of $SnO_{2-X}$ thin film with added Pt fabricated by the dipping method, Sensors and Actuators, B1, pp. 301-305, 1989 https://doi.org/10.1016/0250-6874(89)80129-5
  18. W.-Y. Chung, D.-D. Lee, effects of added $TiO_2$ on the characteristics of $SnO_2$ based thick film gas sensors, Thin Solid Films, 221, pp. 304-310, 1992 https://doi.org/10.1016/0040-6090(92)90832-V
  19. 홍영호, 이덕동, Pt 전극을 사용한 $SnO_2(Ca)/Pt$ 후막소자의 탄화수소계에 대한 감응특성, 한국센서학회지 제 4권 제 2호, pp. 1-7, 1995
  20. J.-H. Sung, Y.-S. Lee, B.-H. Kang, J.-W. Lim, D.-D. Lee, Sensing Characteristics of Tin dioxide/gold sensor prepared by coprecipitation method, 7th Int. Conf. of Chemical Censors, Beijing, China, pp. 819-821, 1998
  21. T. Seiyama, Denki Kagaku, 40, pp.244, 1972
  22. B. D. Cullity, Elements of X-ray Diffraction, 2nd ed., Addison Wesley, London, 1978