A Study of High-Quality Factor Solenoid-Type RF Chip Inductor Utilizing Amorphous $Al_2O_3$ Core Material

비정질 $Al_2O_3$ 코아 재료를 이용한 Solenoid 형태의 고품질 RF chip 인덕터에 관한 연구

  • 이재욱 (湖西大學校 電子工學科) ;
  • 정영창 (湖西大學校 電子工學科) ;
  • 윤의중 (湖西大學校 制御計測工學科) ;
  • 홍철호 (湖西大學校 制御計測工學科)
  • Published : 2000.06.01

Abstract

Recently, there is a growing need to develope small-size RF chip inductors operating to GHz to realize high-performance, micro-fabricated wireless communication products. For the development of high-performance RF chip inductors, however, the ferrite-based chip inductors can not be used above 300MHz due to the limitation of the permeability of this material. In this work, small-size, high-performance RF chip inductors utilizing amorphous $Al_2O_3$ core material were investigated. Copper (Cu) with 40${\mu}m$ diameter was used as the coils and the chip inductor size fabricated in this work is $2.1mm{\times}1.5mm{\times}1.0mm$. The external current source was applied after bonding Cu coil leads to gold pads electro-plated on the bottom edges of a core material. The composition of core materials was measured using a EDX. High frequency characteristics of the inductance (L), quality factor (Q), and impedance (Z) of developed inductors were measured using an RF Impedance/Material Analyzer (HP4291B with HP16193A test fixture). The developed inductors have the self-resonant frequency (SRF) of 1 to 3.5 GHz and exhibit L of 22 to 150 nH. The L of the inductors decreases with increasing the SRF. The Z of the inductors has the maximum value at the SRF and the inductors have the quality factor of 70 to 97 in the frequency range of 500 MHz to 1.5 GHz.

우수한 성능을 가지며 소형${\cdot}$경량인 무선통신기기를 구현하기 위해서는 GHz 대의 고주파수에서 동작하는 소형 RF chip 인덕터의 개발은 중요한 연구분야가 되어왔다. 또한 최근 많이 사용되는 자성 ferrite core 재료는 300MHz 이상의 주파수영역에서 자화율이 급속하게 감소하여 고성능 RF chip 인덕터 개발에 큰 장애가 되고 있다. 따라서 본 논문에서는 비정질 $Al_2O_3$ 코아 재료를 응용한 단순 solenoid 형태의 소형${\cdot}$고성능 RF chip 인덕터를 연구하였다. Cu를 코일 (직경=40${\mu}m$)로 사용하였고 인덕터 크기는 $2.1mm{\times}1.5mm{\times}1.0mm$였다. 외부 전류원은 코일의 양단을 코아 가장자리에 적층된 Au 막에 본딩시킨 후 인가되었다. 코아의 성분은 EDX를 사용하여 분석하였다 개발된 인덕터의 인덕턴스 (L), quality factor (Q), 인피던스(Z)등의 주파수 특성은 RF impedance/Material Analyzer (HP16193A test fixture가 장착된 HP4291B)로 측정되었다. 인덕터들의 인덕턴스 값은 22 nH ~ 150 nH 범위를 가지며, 이들의 자기공진주파수 (SRF)는 1~3.5GHz 영역을 나타낸다. 또한 자기공진주파수가 증가함에 따라 인덕턴스 값이 감소하는 경향을 보이고 있다. 임피던스는 공진주파수에서 최대 값을 가지며 Q-factor의 값은 500 MHz ~ 1.5 GHz 주파수 범위에서 최대 70~97까지 얻어졌다.

Keywords

References

  1. Takanori Tsutaoka, Teruhiro Kasagi, Kenichi Hatakeyama, 'Magnetic Field Effect on the Complex Permeability for a Mn-Zn Ferrite and its Composite Materials,' Journal of the European Ceramic Society, pp. 1531-1535, 1999 https://doi.org/10.1016/S0955-2219(98)00474-9
  2. Rob Groves, David L. Hararme, Dale Jadus, 'Temperature Dependence of Q and Inductance m Spiral Inductance Fabricated in a Silicon-Germanium/BiCMOS Technology,' IEEE Journal of Solid-State Circuits, vol. 32, no. 9, pp. 1455-1459, Sep, 1997 https://doi.org/10.1109/4.628763
  3. I. Wolff and H. Kapusta, 'Modeling of Circular Spiral Inductors for MIMICs,' IEEE MTT-s Digest, pp. 123-126, 1987
  4. Y. Kobayashi, S. Ishibashi, K. Shirakawa, J. Toriu, H. Matsuki, K. Murakami, 'New Type Micro Cloth-Inductor and Transformer with Thin Amorphous Wires and Multi- Thin Coils,' IEEE Trans. on Magnetics, vol. 28, no. 5, pp. 3012-3014, Sep, 1992 https://doi.org/10.1109/20.179701
  5. W. H. Hayt Jr., 'Engineering electromagnetics,' 5th ed. New York: McGRAW-Hill, 1989
  6. R. F. Soohoo, 'Magnetic Thin Film Inductors for Integrated Circuit Applications,' IEEE Trans. on Magnetics, vol. MAG -15, 1803, 1979
  7. Chong H. Ahn, Mark G. Allen, 'A New Toroidal-Meander Type Integrated Inductor With A Multilevel Meander Magnetic Core,' IEEE Trans. on Magnetics, vol. 30, no. 1, pp. 73-79, Jan, 1994 https://doi.org/10.1109/20.272517
  8. Chong H. Ahn, Mark G. Allen, 'Micromachined Planar Inductors on Silicon Wafers for MEMS Applications,' IEEE Trans. on Industrial Electronics, vol. 45, no. 6, pp. 866-876, Dec, 1998
  9. K. Shirdkawa, K. Yamaguchi, M. Hirata, T. Yamaoka, F. Takeda, K. Murakami, and H Matsuki, 'Thin Film Cloth-Structured Inductor for Magnetic Integrated Circuit,' IEEE Trans. on Magnetics, pp. 2262-2264, 1990 https://doi.org/10.1109/20.104692
  10. H. Matsuki, N. Fujii, K. Shirakawa, J. Toriu, K. Murakami, 'Magnetic-Multi-Turn Planar Coil Inductor,' IEEE Trans. on Magnetics, vol. 27, no. 6, pp. 5438-5440, Nov, 1991 https://doi.org/10.1109/20.278864
  11. C. Patrick Yue, S. Simon Wong, 'On-Chip Spiral Inductors with Patterned Ground Shields for Si-Based RF IC's,' IEEE Journal of Solid-State Circuits, vol. 33, no. 5. pp. 743-752, May 1998 https://doi.org/10.1109/4.668989
  12. Tae-Ok Kim, Uoung-Woo Oh, 'The Formation Process of the Hexagonal Ferrite During Calculating the Mixture of $Ba(OH)_2,$ $Zn(OH)_2$ and $6Fe(OH)_3$,' Journal of the Korean Ceramic Society, vol. 17, no. 3, pp. 121-128, 1980
  13. Jen-Yen Hsu, Hon-Chin Lin, Hon-Dar Shen and Chi-Jen Chen, 'High-Frequency Multilayer Chip Inductors,' IEEE Trans. on Magnetics, vol. 33, no. 5, pp. 3325-3327, Sep, 1997 https://doi.org/10.1109/20.617932
  14. E. Pettenpaul, H. Kapusta, I. Wolff and et. al., 'CAD Models of Lumped Elements on GaAs up to 18 GHz,' IEEE Trans. on Microwave Theory and Tech., vol. 36, no. 2, pp. 294-304, Feb. 1988 https://doi.org/10.1109/22.3518
  15. Y. C. Shih, C. K. Pao, T. Itoh, 'A Broadband Pararreter Extrdction Technique for the Equivalent Circuit of Planar Inductors,' IEEE MTT-s Digest, pp. 1345-1348, 1992