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Inhibitotory Synapses of Single—layer Feedback Neural Network

B R E
(Min-Je Kang)

Abstract - The negative weight can be often seen in Hopfield neural network, which is difficult to implement negative
conductance in circuits. Usually, the inverted output of amplifier is used to avoid negative resistors for expressing the
negative weights in hardware implementation. However, there is some difference between using negative resistor and the
inverted output of amplifier for representing the negative weight. This difference is discussed in this paper.
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1. Introduction

The single-layer neural networks discussed in this
paper are inherently feedback-type nonlinear networks.
Neurons with a continuous activation function can be
used in such systems. The networks discussed here are
based on the papers of Hopfield[1,2,3]. Many years of
development in the area of continuous system have
contributed to the existing state of the single-layer
feedback networks. As known, the networks can be
useful in many ways. They can provide associations or
classifications, optimization problem solution, restoration of
patterns, and they can be viewed as mapping networks.
Despite some unsolved problems and limitations of the
fully coupled single-layer networks, their impressive
performance has been documented in the technical
literatures[2,4]. Both hardware implementations and their
numerical simulations indicate that single-layer feedback
networks provide a useful alternative to traditional

approaches for pattern recognition, association, and

optimization problems.

One among the existing problems in hardware
implementation is to express an inhibitory synapse. The
common method to avoid using a negative resistor for an
inhibitory synapse, the amplifier used for neuron has both
outputs: one is a normal output(+), the other is an
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. Hopfield neural network, negative weight, inverted outputs.

inverted output(-). An excitatory synapse is connected to
a normal output of neuron and an inhibitory synapse is
connected to an inverted output[2]. In this paper, we
discuss the difference between the negative resistor and
inverting output for constructing an inhibitory synapse.
Also, we discuss the considerations when the inverting
output is used for implementing an inhibitory synapse.

2. Neural Networks For Optimization Problems

Most of the combinatorial optimization problems can be
replaced by the effort to search for the minimum of the

function F on {-1,1}" defined by

F( ‘U) = %. 121 121 Wibiv;— IZI i,‘U,‘ (W

where w; and i; are constants satisfying

wi=w;(1%7) and w;—q for i=j =1,..n. We call this

function an “objective function’[7]. We review an
electrical model for the Hopfield neural networks.

The Hopfield networks is a simple neural circuit which
consists of synaptic connections and neurons. In the
actual network, the non-linear input-output relation of

neuron is determined by a sigmoid function{4,6]

f(u)———a—u,. 2

1+e

where u%; is neuron input and « is sigmoid gain. The

neurons are coupled together by a set of non-linear
differential equations,
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du; . .
g = g}lw,,v,--kz,—( le,;+gi)u,-' i=1,...,n

(3)

where n is the number of neurons, v is the neuron
output, u is neuron input, w is the synaptic connection, ¢
is the input capacitance, and similarly g; represents the
input conductance between the i_th neuron input and
ground. Conductance wjconnects the output of the j_th
neuron to the input of i_th neuron. Current i is the bias
incoming current into the i_th neuron input.

Denoting the total conductance connected to the i_th

neuron input node as Gi, where

Gi= B wita: ) @
Eq. (1) can be simplified to the form of a single state
equation as

Ci%= ﬁw,;v,«-}-i,»—G,»u,; i=l,...,n 5)
7=1

Hopfield showed that provided w;=wy; and w;=0
for all i and j, the state of the networks v; converges to

a local minima of a Lyapunov energy function{1]

E(v)= —‘%‘ Zl ng W, — Zliivi"' ZlGifOZf_l(Z)dz

(6)
It is claimed that dE/dt<0 for all i, therefore, it
shows that the Lyapunov energy function will always be
minimized.

3. Inhibitory Synapses using Inverting Neuron

The elementary nerve cell, called a neuron, is the
fundamental building block of the biological neural
network. A typical neuron has three major regions: the
cell body, the axon, and the dendrite. The synapse is a
contact organ which connects the axon of neuron to the
neighboring neurons’ dendrites. There are two kinds of
synapses, one is a excitatory one which causes a neuron
firing, the other is inhibitory one which hinders the firing
of neuron{9]. We often see the negative weights in
optimization problem wusing neural networks. These
negative weights can be regarded as inhibitory synapses.
When designing Hopfield neural networks, the synapse

w; which connects the jth neuron output to the ith
neuron input can be expressed by the resistance
R;=1/w; . To provide for both excitatory and

inhibitory synaptic connections between neurons while
using conventional electrical components, each amplifier
used for neuron is given two outputs: a normal output(+)
and an inverted output(-) of the same magnitude but
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opposite in sign. If the synapse is excitatory( w,;>0),
this resister ( R;=1/lw;|) is connected to the normal
output(+) of the jth amplifier. For an inhibitory synapse
(w;<0 ), it is connected to the inverted output(-) of

the jth amplifier. Thus, the normal and inverted outputs
for each neuron allow for the construction of both
excitatory and inhibitory connections through the use of
normal (positive valued) resistors.

3.1 The two Models: Using Inverting Output and
Negative Conductnace

In this section, we use Norton’s equivalent circuit to
analyze the difference between using inverting output and
negative resistor to represent inhibitory synapse. Fig. 1
shows the circuit seen from the ith neuron input node,

.
Ii

|
S
7
AY

vl

v2

Y &—AAA—
e — Vi
L] = f(U)
s IU‘ | /

\ho—ﬂ,—l -
Fig. 1 Input node i connecting inhibitory synapse w; using
inverting output V.

where the synapse W; is inhibitory, all other

synapses are eXcitatory. Inverting output of the kth
amplifier and |wy] are used for the inhibitory synapse

Wi Fig. 2 shows the equivalent circuits of the negative

conductance and the  inverting output wused for

implementing the inhibitory synapse w;,. For two

circuits to be same, the total incoming currents and total
conductance at the ith input node should be same. Let’s
check the total incoming currents at the ith input node,
then the total incoming currents using the negative
conductance is as

Imeg= 3 wilv— lwaloi + i M

and the total incoming currents using the inverting
output is as

Lim= 3 lwilo; + lwaloe + i ®

As seen from Eq. (6) and (7), it can be known that
the total incoming currents in both circuits are same.
However, the total conductances in both circuits are
different, the total conductance using negative



conductance is
Gineg= ‘_ﬁ:, lwd —lwal + g; 9)
j=T,j*k
and , the one using the inverting output is as
G,~inv= ;}Iw;,{+g,» (10)

As we have seen, these two models are not same.
However, these two models have been assumed same so
far. In the next two sections, we discuss when this
assumption can be accepted or not.
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Fig. 2 Equivalent circuits seen from input node i where
w; is inhibitory,
(@) Using non-inverting neuron, {b) Using inverting
neuron.

3.2 The High Sigmoid Gain System

As mentioned at the previous section, the popular
method of designing neural networks involves an energy
function of the form Eq. (6). The first two terms of this
equation are chosen in design process to correspond to
quadratic cost function which when minimized over the
range of vi, i=l,..n, will yield desired solutions to the
problem of interest. The usual justification for ignoring
this term is that the integral vanishes in the high
sigmoid gain.

The negative gradient of the energy function(6) can be
computed as

*VE(U)= IZIW,','U,"*'I-{_‘G,'M," i=l,...,n 11)

By comparing (7) with the right hand side of (5), it
can be written as
du,' .
~VE(y)= ar i=1,....,n (12)
Using the inverse function f~'(2), the third term in
Eq. (6) can be expressed as
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550z (19)

E3=-}r_ ‘ZIG,-f;ln( z

As the sigmoid gain( @) is approaching infinity, it can
be seen that this third term is disappearing and also is
disappearing the third term of Eq. (11). By comparing
(11) with (12), the state equation (5) can be simplified as
follows,

du; 2 . .
C,'T'—_ l=1w,~,~v,-+z,- l=1,...,n (14)

Thus, the incoming current into the ith capacitor is not
affected by the total conductanceé G; In the Hopfield

networks with high sigmoid gain, both two systems
which are using inverting neuron and negative resistor
for the inhibitory synapses yield the same results in
solving the problem of interest.

3.3 The Finite Sigmoid Gain System

As mentioned before, the common method for ignoring
the third term is to use high sigmoid gain. However, as
a sigmoid gain @ goes infinite, the output of neuron
becomes discrete rather than continuous[5,7]. In this
section, we discuss new method with which both two
systems for inhibitory synapses yield same result with a
finite sigmoid gain. However, the system efficiency of
solving problem decreases because of existence of the
third term of energy. This problem and the solution are
discussed in section 3.3.2.

3.3.1 Inverting Neuron with the Finite Sigmoid Gain

With this new method, the system can keep the
continuous output of neuron as well as yield same result
in solving the optimized problems as using negative
resistor. With the finite sigmoid gain, the third term of
energy function (6) exists, and therefore the incoming
current into the ith capacitor is affected by the total
conductance G;. As known in Eq. (9) and (10), the total

conductance in two models for implementing inhibitory
synapses are different.

Thus, for the two systems to yield same results, the
energy function in both cases should be same. Thus, the
total conductance in both models should be same as
follows

Gmeg= Giinv (15)

However, synapses w; is the determined value from
the beginning when to design system, therefore w,; is
unchangeable. But, the parasitic conductance g; , which

is connected in parallel with capacitor c;, can be

adjustable. This parasitic conductance is only known to
partially define the time-constant with the parasitic
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stability.
However, it has not been analyzed how to contribute to
systemm’s  stability.  Anyway, the value for this
conductance has been selected experimentally, in other
words, a trial and err method has been used to select the
value of this conductance when to implement hardware so

capacitor and to contribute to system’s

far. The method how to select optimized value for this
conductance is discussed in next section.
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Fig. 3. 2bit A/D converter transient simulation of output.
in case x=1.6, anda=2:
(a) Using noninverting neuron and g1=g2=2.2

(b) Using inverting neuron and g1=g2=2.2
{c) Using inverting neuron and g1=02=-1.8

To make the total conductance in both models same,

this parasitic conductance can be adjustable by comparing
Eq.(9) with Eq.(10) as follows
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gitnv= ’_zﬁj*ilw,«,i—lw,-,{+g,~neg— lew,-,{(lfi)

Case Study
The 2-bit A/D converter is selected for a case
study{3]. The energy function for 2-bit A/D converter
Ancluding weights and bias currents can be expressed as
follows [3], where x is analog input
—
2

E=—%[Ul Uz][ __g —g][ z;]_[vl v, 02

E‘—fov'm( Z )

(17)

+| a Jos 1—-2
Gy oz
a ﬁ;.sln( 1—z)dz

Fig. 3a, 3b shows the transient results in case of
x=16, =2, and g,= g, =2.2using noninverting neuron
and using inverting neuron respectively. For using
noninverting output of amplifier, -0.50hm is selected for -
1/|lwygl and - 1/lwyl and 1/2.2 ohm is selected for 1/g;
and 1/g5. And for using inverting output of amplifier,

0.50hm is selected for 1/|wy and 1/lwyl and same

value is selected as before for 1/g; and 1/g.. As

expected, these figures show totally different results with
finite sigmoid gain@=2. Fig. 3c shows result when the
parasitic conductance g, £ are adjusted to -1.8

respectively using (16) and this system yields same result
as in Fig. 3a.

3.3.2 Effects of the total conductance on
convergence

The third term energy (13) is zero for vi=1/2 and
positive otherwise, getting large as vi approaches 0 or 1
because of slowness with which Av) approaches its
asymptotes (Fig. 4a). As mentioned early in this section,
it can be known from Eq. (13) that the common method

for neglecting the third term of energy function Ej; is to
lect the sigmoid gain @ very high.

Consider now new method of ignoring the third term
of energy function with the finite sigmoid gain using .

Ej is a function of vi, the sigmoid gain @, and the total

conductances G; Here, we introduce a new method to
eliminate this term by adjusting the total conductances

G;. To eliminate the third term energy, the total
conductances G; can be adjusted to zero.

G=gi+ Bwi=0 i=l2,..n

(18)Thus, the input conduces g; can be adjusted as



follows
gi= 2 Wi
=1

i=1,2,...,n. (19)

This choice of g; in the system would ensure
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Fig. 4. (a) The output-input transfer characteristic,
u=f"YW.
(b) The contribution of F ! to the third
term of energy function.
convergence exactly to the objective function.

However, it has been known that the total conductances
G; equal to zero causes the input space to be unstable,
that is, the input space changes linearly to infinite in
time. Therefore, the total conductances G; should be
selected as small as possible to neglect the third term

energy, but should be greater than zero to make the
input space stable(8].
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Case Study
The 2-bit A/D converter is also selected for this case
study. Fig. 5 shows the energy map and transient result

{b)

Fig. 5 2bit A/D converer in case x=1.6,
g1=g2=2.8, anda=2: (a) The energy map,
(b) Transient simulation of output.

in case of x=16, @=2, and G;= G,=0.8. -050hm

isselected for - 1/lwl and -1/|wy| and 1/28chm is
selected for 1/g; and 1/g,;. We can see that the system
converges near to the answer but not correct one(the
digital outputs should be v1=0 and v2=1 for analog input
x=1.6). However the system would converge farther from
the answer as the total conductances G; grows, because
this minima moves toward the center of the energy map
as the third term energy grows. Fig. 6

shows the energy map and transient result where
G =G;=0.1. are selected to reduce the third term
energy. As seen in Fig. 6, the minima is located almost
at the correct answer compared as in Fig. 5 and so
converges the system in transient simulation.
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Fig. 6. 2bit A/D converter in case x=1.8, g1=g2=2.1,
anda=2: (a) The energy map, (b) Transient
simulation of output.

4. Implementing the optimized input conductance

4.1 Negative Impedance using Amplifier.

Fig. 7a shows the well known circuit to implement
negative impedance using operational amplifier. The
equivalent resistance seen from node a to ground can be
easily obtained as

R,=—*=—2L (20)

Therefore, provided R,= R,, the equivalent resistance

can be simplified as
R,=—R (21)

The resistance R has varied in region [10,100] with
step size of 10 applied to the circuit shown in Fig. 7h.
As shown in simulation, the satisfied results is obtained
at the resistance value above 30ohm in the region of
input voltage [-2, 2], because the maximum output
current of up741 OpAmp is about 40mA. Therefore, we
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Fig. 7. Negative resistance circuit, (a) Schematic
diagram for Pspice (b} Simulation for different
values of resistor R.

have to remind the fact that this circuit is limited to the

high value of resistance. So, it is not possible to use this

circuit for Hopfield networks where the weights are in

range of high value, that is, the resistors for those

weights are very small value. Now, we return to

discussing the method to use this circuit by scaling input

conductance.

4.2 Scaling input conductance

The energy function E(v) of the Hopfield networks can
be scaled without changing the shape the energy contour
but changing level as

E(U)scaled=K[_% Z‘n )leii”ivf - Zliﬂ)i

follow

‘ (22)
FSafiro

where k is a scale factor. The scale factor k does not



change the shape of the energy function, but only scales
the entire contour with same ratio. Therefore, both the
scaled and unscaled network have a minimum at the
same point so that the scaled Hopfield network converges
to the same point as does the unscaled network.
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Fig. 8. The scaled circuit for 2bit A/D converter,

(a) Using negative resistance circuit for s,

(b) Simulation for Zysee = &psca=—1.9 X105

The conductance, bias current, and total conductance for
the scaled Hopfield network are obtained by rearranging

Eq.(22) as follows
B == 2, B (K, ~ 2 (Ki;
=1 j=1 =1 (23)
R
+ 2(KG) [ f(2)ae]

Therefore, the conductance, bias current, and total

conductance for the scaled Hopfield network are

Wcaled = Kw, Z.scaled = Kl., chaled =KG (24)
HEHE He SEHaHE 22 Inhibitory Synapses
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Case Study

The 2-bit A/D converter is also selected for this case
study. The scaled weights, bias currents and input
conductance can be expressed as follows [3], where the

scaled fator k is 10 ~3.

1
w1073 0 =2) 1073 %77,
[ 2% 7] 22

Ea= 10‘3[ f;;]
(20)Fig.8a shows the circuit diagram in case of x=16, a
=2, and Gisw = Gpsea=0.1 x1073%. 5000hm is used in the
scaled system for 1/iwed and 1/lwagl. Thecircuit in
Fig. 7a is used to construct the input conductance g,

shown in Fig. 8a. To implement

and Lasca

Clsca™= E250a=—1.9%107%5, (—1/1.9)kQ is used for R
in the negative resistance circuit. As seen in Fig. 8b, the
system converges to the same point as in the unscaled
system.

5. Conclusion

To represent an inhibitory synapses, usually the
inverted output of amplifier is used. The total incoming
currents of an input node in both circuits, where the
inverted output of amplifier and the negative resistor are
used for the inhibitotory synapses, are same. However, it
has been shown that the total conductances are different
in two circuits, and this total conductances affects the
convergence of system. As the total conductance grows,
the third term of energy function increases, and thus, it
cause the energy function of system differ from the
objective function which is to be minimized. So we know
that the total conductances should be selected as small as
possible, but positive to prevent the input node from
being unstable. Also, it has been shown that the well
known circuit for a negative resistance is limited in using
the comparatively high value of resistance. Thus, it is
shown in this paper how to scale the energy function to
use this circuit for constructing the optimized input
conductance.
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