344 TN 7 Fs s

The class testing based on a dependence graph

=
q 5

2
Dong Ju Im
e
A 2ol gEwe Fd2 A4, Al 54 bt
F glok vatht 71Ee] 220y FE848 ezl
gl %Lg oA et shs EAE HEE + 9
ZF 78 £F JRE Yehle vas %—’—'T— 2dg

o A &I FYA el AE WS
o} £ I 7] HaY 71ES 1}@]7
A s 498 5o HAE ug 308 A2 ¥

54 WIYEOR ofFol
bol ol 2A7e F4AE vEhiaL stk 3, Folal wigo) olmd

LI < B

Sang Hyun Hae

| A A T2 Fdo] adE Heg

t aEba ¥ A7e AAAG 22N Wette] 548
3 *ﬂ*lf?}ﬂ Fgch w3 AAG 22| HAE HFA 7IE
At dioe] WM 549 HAE dole] HPAd dF FelEg 1es)
E‘/\E ;ﬂo]}\o] nﬂ)\v::,‘]

SR ESL e N ES 5 AHe AAHEE efdith

25 AN Y FTS BAEE A8

Abstract

The representation of a procedurd progrom cannot be applied directly to object oriented program representation consisting
of class, object, inheritance, and dynamic binding. Furthermore, preexisting program dependence represented the dependence
among sfatments, but not among variables. That is, it could not solve the problem of which variables make an effect on given
variobles. Consequently, this study presents the method dependence model representing implementation level information
including the dependence among variables in an object oriented progrom. | diso propose implementation-based closs testing
fechnique based on the test adequacy criterion of an object-orented program. Considering infer-data member dependences
ond a set of axioms for fest data adequacy. it generates sequences of methods os test cases which safisfy a flow graph-basec
festing criterion. For a derived class testing, it considers inheritance relationship and the resuabiiity of the testing information for

its parent closses which verified the reduction of fest cost through the experiment.

1. Introduction

A program dependence graph is the most widely
used application field in the various representation
methods of a procedural programf5]. OMT(Object Mo-
deling Technique) which is the representation of the
object-oriented design cannot be used for a code anal-
ysis, because it contains the design-level information,
but not the detailed implementation information.

The existing representation has some restrictions when

ZANSy ANEA S
imdongju@hanmail net
Zojsta ASASY 55
shbae @chosun.ac.kr

*3 3 9
w* ZABY

a program dependence graph is used in the new field
of software engineering.

First, the representation cannot be applied directly
to an object-oriented program. A program dependence
graph should represent the difference from a pro-
cedural program caused by class, object, inheritance,
and dynamic bindings for the proper representation
of an object-oriented program dependence. For example,
it should represent the method which is not a pro-
cedure, the dynamic bindings of method call due to
the polymorphism, and the flow dependence relationship
between methods.

Second, the prior program dependence could not

S OlE{ull x-IEs+§|(X2 }§)

106

o]

&4 J3=

ZaiA HAE

express the variable dependence precisely, although
it represented the statement dependence because the
primary concern of a compiler was whether or not the
order of statements could be changed without affecting
a program execution. That is, the problem of which
variables can make an effect on given variables is
not able to be solved.

Third, the program dependence graph is too large
and complex to understand, becauseit contains the
dependnece graphs of all the called procedures in a
single graph. The procedure-unit query can be solved
by the modularized dependence graph only. Therefore,
it is desirable to apply the divide&conquer and modu-
larization principles of software engineering to a pro-
gram dependence representation.

Most of the research on software testing is for a
procedure-oriented software. Object-oriented software
structure is different from procedure-oriented one. Even
though a conventional testing is efficient, it cannot be
applied directly to object-oriented software [8][9][10].

A basic composition unit in object-oriented software
is a class. An individual testing of the methods which
are the operations defined in a class is simple, but a
class testing cannot be reduced to the independent
testing[11][15]. Each method operates mutually with
other methods by being executed based on a given
object state and by changing the state. The execution
environment of the methods is given not only by pa-
rameters but also by an object state. The methods
influencing an object state can be regarded as the
public methods accessible out of the exterior of the
class, and the methods can be called in an arbitrary
order. Therefore, it is important to determine in what
order the methods are executed for a class testing.

2.Method dependence model

The method dependence graph proposed in this

section is based on the procedural program depen-
dence model Jackson and Rollinsf4] studied, and it
is extended so that it can be applied to the object-
oriented program. A few kinds of procedural pro-
gram dependence graphs exist without a standardi-
zation, and they are a little different from one another
in the application field. The important thing is the
level to which a graph represents a dependence.
Horwitz et al. asserted that a dependence graph
should be as follows for the programs to terminate
with the same execution state when the program
dependence graphs are of the same type[2][3]. It
should represent the dependence relationship at least
described below with an entry node, an initial defi-
nition node of each variable, and a final use node of
each variable added in addition to the node represen-
ting each statement. The dependence is divided into
a control and a data dependnece, a data dependence
is into a flow and def-order dependence, and a
flow dependence is into a loop independent and a
loop carried dependence.

A node to call a method has data members as
an implicit parameter in addition to parameters and
global variables, because the data members are like
global variables in the method defined in a class.
Therefore, the used or defined data members occur

initial_def_port(use_pot) —— td degelsummary edge)

sometimes modified final_use _port

final_use _oort(def_oort)

use_port

def_port

(Fig. 1) Method dependence graph
representation symbol

106

2000. 11.

la

O

AP
=

M Jefz Jldr Zeia A

in the port pertaining to the calling node.

For simplicity, it is assumed that each statement is
defined as a node and a parameter has a different name
from a data member.

A method dependence graph using Fig. 1 is 6-tuple

as follows.

Method dependence graph
MDG(M)=<Node, Part, %, —%
Node = program_Statement | {method_header}
Vars = variable U object U class U {7, 7, null_port}
Port & Vars X Node

Summary edge(—'%), intenal edge(—"™), and external
edge(ﬂOd or —>d") are defined with a different de-
pendence, and external edge is divided into a data
flow and a control dependence.

S8 w8 P x Port

- < Node X Node

Intemal edge —" represents a data dependence from
the use of a variable or a constant through a variable
definition, and extemal edge —* from the variable de-
finition of a node through the same variable use of
the

other node. — designates a control dependence from
the execution result of a node(or a header node) through
the other node.

__)du

In

{(xD,x)) | DEF(x,]) A USE(xJ)}
{((xD,(y,) | USE(x,) A DEF(y,D}
{d,)) | T is control dependent on I}

The definitions of USE(v,n) and DEF(v,n) are as

follows.

N

—
od
—

In

B USE(v,n)
A node n&Node is the use node of a variabie v
EVars. © a variable v is used at the statement to a

node n.

(Fig. 2) Method dependence graph

B DEF(v,n)

A node n&=Node is the definition node of a var-
iable vEVars, < a variable v is defined at the state-
ment to a node n.

Figare 2 is the representation for which this research
is applied to the example program , Elevator::go() that
is extracted a from literature[6].

B Example program
class Elevator{
public:
Elevator(int_top_floor)
{current_floor=1,
current_direction=UP;
top_floor=1_top_floor;}
virtual~Elevator() {}
void up(}
{current_direction=UP; }
void down()
{current_direction=DOWN;}
int which_floor()
{return current_floor;)}
Direction direction()
{return current_direction;)
virtual void go(int floor)
{if(current_direction=UP)
{while((current_floor!=floor)&&
(current_floor>0))

82 olEfyl Fualsl (3213)

107

e Fagl= E

add(current_floor,-1);}
]
Private:
void add(int &a, const int &b)
{a=a+b}
protected:
int current_floor;
Direction current_direction;
int top_floor;

|

class AlarmElevator:public Elevator|{
public:
AlarmElevator(int top_floor):
Elevator(top_floor)
{alarm_on=0;}
void set_alarm()
{alarm_on=1;}
void reset_alarm()
{alarm_on=0;}
void go(int floor)
{if(falarm_on)
Elevator::go(floor);
}
protected:
int alarm_on;

IR

3. Class testing using slicing

The testing of a class which is a basic compo-
sition element of an object oriented program is pro-
posed in this section. As a class testing camnot be re-
duced to the independent testing of the methods, the
mutual operation between the methods through the data
members should be tested. The dependence between
the data members should be also tested. To begin with,
a base class testing is proposed in section 3.1, with

the points considered.

A derived class testing should consider the mutual
operation between the classes through an inheritance
and the reusability of the test cases developed already
in the process of a base class testing.

3.1 Base class testing

The individual method is a condensed function and
a minimum unit of the testing. The unit testing of
a conventional software testing can be applied for a
method umit testing. The local variables or data mem-
bers defined and used in the body of the method
are tested with the previous data flow testing.

In case the call of the other method occurs in the
body of a method, the integration testing of a con-
ventional software testing can be applied for the
method integration testing, as the call relationship can
be determined statically.

The set of the methods using or defining a data
member d as level-0 can be identified from a class
data flow graph. The definition set of level-i can be
grasped by the backward traversal of a class hier-
archy with a data member d selected as a slicing cri-
terion. That is, when a backward edge traversal is
made from a data member d, the methods marked
first become the elements of Dy(d), and the methods
marked second in the continual traversal become the
elements of Dy(d).

[Definition 1] D;i(d), definition of level-i m; defines d,
as level-0, if a method m; defines a data member d,
directly.

m, defines d; as level-1, if a method m; defines a data
member d; as level-0, and a method m; defines a data
member d; used to define d; as level-0. The definition
of leveld is also defined in the same way. If level-k or
level-(k+1) is possible to be defined, it is defined as
level-k. The set of the methods defining d as leveld is

designated as Dy(d).

108

2000. 11,

o

£4 I8z Jly B2 Hag

For example, even though the method defining d,
as level-1 does not define d; within it directly, it
makes an indirect effect on d; by defining d;
influencing the definition of d,.

The use of level-0 is defined like the definition
of level-0.

[Definition 2] Uy(d), the use of level-0 m; uses d; as
level-0, if a method m; uses a data member d,
directly. The set of the methods using d as level is
designated as Ui(d).

A data member definition matrix represents the
direct or indirect dependence between the methods
through the data members caused by the use-definition
relationship of data members.

[Definition 3] Data member definition matrix

When the number of a class data member is n, a data
member definition matrix is a nXn matrix designated as
Def_M(i,j), which is defined as follows.

If Do(dj) defines d; as level-k, Def M(,j) = dk

For example, as Dy(d;) is the set defining d; as
level-0 from Def. 1, the value of Def M(,i) is do.
If the value of Def M(,j) is di, the method set
Do(d;) defining d; as level-0 makes an indirect effect
on a data member d.

Dofdi) Dyldz) v Do(d) - Do(dy)
d d ..
& dp
4 4
d, .. d

The base class testing process described so far has
been studied along with the examples. An example of
a class Elevator is explained in the program of Hg. 2.
The data flow graph of a class Elevator is as Fg. 3.

—{—

i evitort . - i

(Figure 3) data flow graph of class edges omitted

A data member definition matrix, and the definition
and use set of which a class slice of each data
member is composed, are as below.

Dofc.f) Dofc d) Doftf)

cfldy d | d
cd dy
tf dy

Constructor = | Elevator },

Dy(c_f) = {go}, Dulc_d) = {up, down], Dot _f) = &,

Uhlc_f) = {go, which_floor}, Uslc_d) = {go, direction},
Ut D) = {go}

Dic_f) = Dolc.d) U Dult_f) = {up, down}, Dyc_d) =
Dit.f) = @

(Table 1) Test example of base class

unit testing of data | integration testing of
d | Did) | Did £ g "8

member data member
Elevator, go, Hevator, up, go,
¢ ap(), | which_floor, go which_floor, down,
cfi g0 down() go, which_floor, go.
which_floor, go
Elevator, up, go,| Executed in unit
o d| w0 g

%) direction, down, go,| testing
~ | down() i :;’ &

Hevator Executed in| Executed in inte-

tf| @ %) unit and integration| gration testing

testing of method

52 olEy HwIsts (3713)

109

The test case generated in the unit testing and the
integration testing of data members is represented in
Table 1.

3.2 Derived class testing

Inheritance is the mechanism sharing the specifi-
cation and code of preexisting classes in defining a
new class. Therefore, a derived class can be generated
by defining the new attributes only different from the
ones of the upper class using inheritance.

The class order in a class hierarchy is given by
an inheritance relationship. The order is an inheritance
relationship between class pairs. Consequently, through
an inheritance, the reuse of the upper class testing
information is possible in the testing process of a
derived class, and the testing information of an imme-
diate upper class only is considered.

A class AlarmElevator is studied in an example pro-
gram of Fig. 2. The data flow graph is as Fig. 4.

A data member definition matrix, and the
definition and use sets composing a class slice of

each data member are as below.

Dolc.f) Dolcd) Dot H Dofao

C_,f dy di d; d
cd do

f dy

ao dp

Constructor = { AlarmElevator }

Dvcd) = (go), Dulc.d) = (up, down), DLh) = &,
Do(a_o) = {set_alarm, reset_alarm }

Ude_f) = {go, which_floor}, Uc_d) = {go, direction},
Ut _f) = {gol, Un(a_o) = {go}

Dic_f) = Doc_d) U D(t_HU Dofao) = {up, down,
set_alarmm, reset_alarm}, Di(c_d) = Di(t_f) = Dia.o) = @

(Figure 4) Data flow graph of class Alarm
Elevator(The member edges omited)

4. The analysis and the com-
parison of the class testing

I examined the reusability and the number of the
test cases through the experiment. I analyzed which
methods and data should be tested for the class tes-
ting in the class hierarchy as in the example of a
chess game.

The result of the experiment showed that the number
of the test case was 509, in the worst case not con-
sidering the reusability. In the case considering the
reusability, however, only the 51% of the test cases
could be performed, the 16% of which tested again,
but it had the reusability. That is, the comsideration of
the reusability of the test cases applied in this paper
could bring about the reduction of the 57% test cases
of the whole.

T

Bard Barditeralor Wwed Gord Gave Piia:e Syen Stahs S1Ee Tem

I N

Bistp Cstle Kig Kigt Pan Qen

(Figure b) Class hierarchy used in the experiment

110

2000. 11,

2

O

A A
=

N T8z 7|

i

gt Sef A BAE

{Table 2) the classes used in the experiment and the

(Table 3) The number of the test cases in types

) number of the test cases of the research class | A*B+C+D| F G=H+I H |
Class | ties | popery intypes || sty | Boad | 45 | 15| 13 | 10 3
A|B|C|D|E F+G Y Boardl 15 3 6 2 4
Board | 52| 15| 0] 0| 3| 0] 45] 28| 18 UComm 25 14 5 2 3
Boardl | 14| 3/ 1| O S| 0[15] 9| 9 Coord 3 9 1 9 3
UComm| 20 | 4] 1| O 4| 0} 25 19¢ 19 Game 17 5 7 2 4
Coord 36 0| 0 2| 0} 31 20 11 Piece 31 12 8 5 32
Game 20 51| 0] 6] 0y 17| 12 12 Screen 19 8 2 2 5
Piece 3241 12) 1| 0| 4 0 31| 2 17 Status 26 12 3 2 3
Screen 19 8 1] 01121 0] 19| 10 10 Square 49 14 16 10 0
Status 240 12 1| O} 7} Of 26| 15 15 Team 61 19 25 12 1
Square 451 14} 1] 014 0] 49 30 22 Bishop 12 6 2 1 6
Team 64| 190 1| Of 1} O 61] 44 4 Castle 13 6 3 2 13
Bishop 18 6 112 2 4] 31 8 8 King 13 6 2 1 1
Castle 18 6| 1112 2 4| 32 9 9 Knight 13 6 2 1 1
King 18 6 1112 2| 4 31 8 8 Pawn 16 6 5 4 1
Knight 18 6 1112 2| 41 31 8 8 Queen 13 6 2 1 i
Pawn 30 9 1|12 2| 4} 34| 11 11 Total 399 147 112 66 46
Queen 18 6 1|12 2| 41 31 8 8 Average 25 9 7 5 3
Toal | 446 [150] 14 | 72 | 59 | 24 | 509 (gf;) (231%)
Avemge| 28] 9] 1| 5] 4| 2| 2| 16| 14 A+B+C+D : inheritance and reusability not considered

A : newly defined methods

B : redefined methods

C : inherited methods

D : newly defined data

E : inherited data

X : test cases not considering the reusability
F+G: the test cases to be performed

Y : the test cases to be generated

5. Conclusion

A proram dependence graph is used for a code
analysis and for the analysis of an information for a
test case generation in an implementation-based method
and class testing, because it contains the detailed im-
plementation information including a control and data
flow dependence relationship between the variables.

In this paper, an implementation-based testing and
the generation of the test cases are proposed, and the

F : intra-method & inter-method level

G infraclass & interclass level

H . data interdependency considered

I data interdependency not considered
adequacy criterion of object-oriented program testing
studied so far is considered as follows. First, the test
cases generated in this research satisfies all use cove-
rage criterion of the test case selection criterion based
on a flow graph. Second, the antidecomposition, anti-
composition, and antiextensionality axioms of Perry and
Keiser are applied to the testing process. Object-unit
testing considering the inter-dependence between data
members for the validation of a class correctness is
proposed, and in the case of a derived class, the
inter-class testing considering an inheritance is proposed.
Third, the reusability of the test cases is considered.
That is, the testing information analyzed previously
in the testing process of a derived class is reused.

32 olEfd HEss| (8§713)

111

O

&M 2z J|dt ZelA HAE

It is proved through the experiment the fact that the
consideration of the reusability can reduce the number

of the test cases.

Acknowledgement

The study was supported by Factory Automation
Research Center for Parts of Vehicles(FACPOV) in
Chosun Univ. Kwangju. Korea. FACPOV is desig-
nated as a Regional Research Center of Korea Science
and Engineering Foundation(KOSEF) and Ministry of
Science & Techonology(MOST) operated by Chosun
Univ.

References

[1] D. W. Binkley and K. B. Gallagher, “Program
Slicing,” Technical Report, IBM, 1996.

[2] S. Horwitz, J. Prins, and Thomas Reps, "On the
adequacy of program dependence graphs for re-
presenting programs,” Conference Record of the
15'th ACM Symposium on Principles of Pro-
gramming Languages, Jan. 1988.

[3] S. Horwitz, Thomas Reps, and D. Binkley, "In-
terprocedural slicing using dependence graphs,”
ACM Transaction on Programming Languages
and Systems,” Jan. 1990.

[4] D. Jackson and E. J. Rollins, “"A new model of
program dependence for reverse engineering,”
Proceedings of the 2nd ACM SIGSOFT Conference
on Foundations of Sofiware Engineering, Dec.
1994,

[5] A. Krishnaswamy, “Program Slicing: An Appli-
cation of Object-oriented Program Dependency
Graphs,” Technical Report TR94-108, Clemson
University, 1994.

[6] L. Lasen and M. J. Harrold, "Slicing Object-

7]

(8]

9]

[10]

[11]

(12]

(13]

[14]

[13]

Oriented Software,” Proceedings of the 18h Inter-
national Conference on Software Engineering,
May 1996.

M. Lorenz and J. Kidd, Object-Oriented Sofi-
ware Metrics : A Practical Guide, PTR Prentice
Hall, 1994.

I. Bashir and A. L. Goel, "Testing C++ Classes,”
Proceedings of the Ist International Conference on
Software Testing, Reliability, and Quality Assur-
ance, 1994

M. . Harrold and G. Rothermel, “Petforming
dataflow testing on classes,” Proceedings of the
2nd ACM SIGSOFT Symposium on the Foun-
dation of Software Engineering, Dec. 1994.

H. Kim and C. Wu, “A Class Testing Tech-
nique Based on Data Bindings,” Proceedings of
96 Asia-Pacific Software Engineering Conference,
Dec. 1996.

M. Smith and D. Robson, “Object-Oriented Pro-
gramming - the Problems of Validation,” Procee-
dings of Conference on Software Maintenance,
1990.

A. S. Parrish, R. B. Borie, and D. W. Cordes,
“Automated Flow Graph-Based Testing of Object-
Oriented Software Modules,” Journal of Systems
Software, Nov. 1993,

D. E. Perry and G. E. Kaiser, “Adequate Tes-
ting and Object-Oriented Programming,” Journal
of Object-Oriented Programming, Jan. 1990.

M. Hutchins, H. Foster, T. Goradia, and T.
Ostrand, “Experiments on the Effectiveness of
Dataflow- and Controlflow-Based Test Adquacy
Criteria,” Proceedings of the 16th International
Conference on Sofiware Engineering, May 1994

M. Ross, C. A. Brebbia, G. Staples, and J.
Stapleton, “The Problematics of Testing Object-
Oriented Software,” SQM’94, vol. 2, July 1994,

112

2000. 11.

o

&4 Jef= 7|t 2 A HAE

OXMARLHO

T

1985 0Tl Skl ESHEEAD

1993 78T YOS BB} olg4AL

20009 2T AA5A ol AL

* Rk ANARRRY, WETToILY, BFH B

by & 3

1982 AYjstw A7FsHEY

19843 xS A7) - WA EAF A

1988 YRFAEHANS PRI SAFID

19883~ WA} ZAheta et ANSAL s

RBAFOE tItEA Aol A, QIFANEE, HA| AL, GIS, A7 2H

3= QIE{Ul M (32S) 113

