단 신

염기조건에서 Dynemicin A에 관련된 모델 화합물들의 에폭시드 열림에

 대한 치한체 효과
洪龍䄪＊• 金気䜌

안동대학교 자연좌학대학 화학과
（2000．7． 18 접수）

Substituent Effect for Epoxide Opening of Model Compounds Related to Dynemicin A under Basic Condition

Youg Pyo Hong＊and Jung Hee Kim
Department of Chemistry，Andong National University，Andong 760．749，Korea （Received July 18，2000）

Dynemicin A（1）is a potent antitumor antibiotic with unique molecular structure and fascinating mode of action．＇It has been known that DNA cleaving ability of 1 is attributed to the benzenoid diradical generation of enediyne system via Bergman cycloaromatization reac－ tion．${ }^{2}$ The activation of dynemicin $A_{\text {d }}$ is triggered by epoxide opening induced by bioreduction of quinone system，followed by developing electron density at C－9．${ }^{3}$ Electron density at C－9 is dependent upon electron releasing power of both nitrogen and oxygen on benzene ring．We reported previously the substituent effect for epoxide opening with tricyclic model compounds under weak acidic condition：${ }^{4}$ For instance，compound 2 with substituent at C－3 on benzene ring and protecting group on nitrogen represented a significant rate difference for the epoxide opening reflecting electron density develop－ ing at C－1a．Here，we note the substituent effect for

Fig． 1.
epoxide opening of tricyclic free amines which are dyne－ micin A mimics under basic condition．

Synthesis of Model Compound．The synthetic method for unsubstituted model compound is represen－ tatively shown in Scheme I．Compound 3^{4} was treated with sodium 2－（phenylthio）ethoxide to exchange N －pro－ tecting group according to a known methods＇．Continu－ ously，oxidation with m－chloroperoxybenzoic acid （ m CPBA）gave the target compound 4 in high yield． Compounds 5－8 were easily prepared by the same syn－ thetic method alternating the starting material．

Reaction of Model Compounds in Weak Basic Condition．Compounds $4-8$ were treated with 1,8 －diaz－ abicycto［5，4，0］undec－7－ene（DBU）to see the substituent effect for epoxide opening at $0^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ in wet tol－ uene，respectively．Each compound gave the comrespond－ ing diols 4a－8a and enols $\mathbf{4 b - 8 b}$ in 87 to 96% yield （Scheme 2）．

Scheme 1．（a） $\mathrm{PhSCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$（ 2.0 equiv．）， NaH （ 2.0 equiv．）， THF， $25^{\circ} \mathrm{C}, 15 \mathrm{~min}$ ；（b）mCPBA（ 2.5 equiv．）， $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{sat}$ ． $\mathrm{NaHCO}_{3}(1: 1), 0^{\circ} \mathrm{C}, 10 \mathrm{~min}$.

Scheme 2. Base-Catalyzed Epoxide Opening of Model Compounds.

Schente 3. Mechanism for Product Formation.

The plausible mechanism for product formation is shown in Scheme 3. Protection group at $\mathrm{N}-5$ is removed to give free amines $\mathbf{4 c}-8 \mathrm{c}$ by base (DBU). The epoxide opening with the aid of nitrogen gives the intermediate I. Continually, attack to $\mathrm{C}-10 \mathrm{a}$ by $\mathrm{H}_{2} \mathrm{O}$ will give the diols 4a-8a. On the other hand, elimination of water from diols will give the enols $\mathbf{4 b - 8 b}$. Even though the free amines could not be isolated and identified, the presumable corresponding spots were observed on TLC during the reactions.

Reaction Time. Table 1 shows the reaction times to lead to products and the ratios (\mathbf{a} / \mathbf{b}) for diol to enoi products at 0 and $40^{\circ} \mathrm{C}$, respectively. The reaction times at $0^{\circ} \mathrm{C}$ were very long in comparison with those (7 to 60 min) under acidic condition at the same temperarure. ${ }^{4 a}$ It is thought that one reason for slow reaction is due to the slow deprotection at $N-5$. But, a significant reaction rate difference appeared for epoxide opening of five compounds. That is, compounds 6-8 with a typical electron withdrawing group at $\mathrm{C}-3$ showed longer reaction times than that of unsubstituted one 4. On the other hand, introduction of fluorise at $\mathrm{C}-3$ activated the epoxide opening representing a resonance effect by fluorine. For instance, the reaction time of compound 5 was only a half of that of unsubstutited one 4. The reaction times at $40^{\circ} \mathrm{C}$ were dramatically shorter than those of $0^{\circ} \mathrm{C}$. Product formafion was completed within 40 min for all compounds. Starting material spots on TLC disappeared in 15 min except compound 8 (20 min). The reactivity for four compounds 4-7 showed a trend according with electronic effect of substituents at $\mathrm{C}-3$.

Table 1. Reaction Times and Product Ratios for model compounds*

			Reaction Time	
Compound	$0^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$40{ }^{\circ} \mathrm{C}$
$\mathbf{4}$	7 h	20 min	1.3	0.7
$\mathbf{5}$	3.5 h	15 min	4.2	0.8
6	8 h	30 min	3.3	1.0
$\mathbf{7}$	$>12 \mathrm{~h}$	40 min	2.4	1.0
$\mathbf{8}$	$>12 \mathrm{~h}$	25 min	7.8	8.6

*All reactions were run in duplicate and averaged.

Table 2. Electron density at C-1a of free amines*.

Compound	4.118
4 c	4.134
5 c	4.112
6 c	4.105
7 c	4.091
8 c	

*The values were obtained by MOPAC-97 (MNDO) calculation methood.

Reaction progress was checked by TLC. The reaction time for epoxide opening is associated with electron density developing at C -1a. Electron densities for free amines 4c-8c were calculated by MOPAC-97 (Table 2). The trend of the calculated values was in relatively accord with that of experimental result. Especially, any trace of 5 c with the highest value was not observed on TLC until the reaction was terminated at $40^{\circ} \mathrm{C}$.

Product Ratio. Experimental results showed a significant difference on the ratio of product formation (Table 1). At $0^{\circ} \mathrm{C}$, the formation of diols $4 \mathrm{a}-8 \mathrm{a}$ was superior to enols $\mathbf{4 b - 8 b}$. And, the product formation was competitive at $40^{\circ} \mathrm{C}$. It is thought that the increase of enol product ratios at $40^{\circ} \mathrm{C}$ in comparison with $0^{\circ} \mathrm{C}$ is due to the activated water elimination. But, the biased values for both reaction time and product ratio of compound 8 at 40 ${ }^{\circ} \mathrm{C}$ were not understood.

In conclusion, our experimental result showed that substituent at C-3 of tricyclic model compound can exhibit a significant effect on the rate of the epoxide opening under basic condition. This means that a new enediyne anticancer related to dynemicin A can be developed by introducing a proper substituent on benzene ring.

EXPERIMENTAL SECTION

Genenral Techniques．NMR spectra were recorded on a Broker DPX－300 or 500 instrument．All reactions were monitored by thin－layer chromatography carried out on 0.25 mm E．Merck silica gel plates（ 60 F －254） under UV light．All new compounds were identified by spectroscopic methods．

Synthesis of Compound 4．Representative proce－ dure．To a suspension of NaH （ 250 mg of 60% disper－ sion in mineral oil， 6.23 mmol ）in dry THF（ 12 mL ）was added 2－（phenylthio）ethanol（ $0.84 \mathrm{~mL}, 6.23 \mathrm{mmol}$ ）fol－ lowed by stirring at $25^{\circ} \mathrm{C}$ for 5 min ．The resulting solu－ tion was added to a solution of $3(1.00 \mathrm{~g}, 3.12 \mathrm{mmol})$ in dry THF（ 19 mL ）．After stirring at $25^{\circ} \mathrm{C}$ for 10 min ，the reaction mixture was dilated with ethyl ether（ 50 mL ）， poured into $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ ，and extractet with ethyl ether $(2 \times 100 \mathrm{~mL})$ ．The combined organic layers were dried （ $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ）and evaporated in vacuo．The residue was puri－ fied by column chromatography（silica， 33% ethyl ether in hexane）to give the product in quantitative yield．To a solution of the above product in dichloromethane（ 15 mL ）and saturated aqueous sodium bicarbonate（ 15 mL ） was added imCPBA（ $70 \%, 1.35 \mathrm{~g}, 7.81 \mathrm{mmol}$ ）followed by stirring at $0^{\circ} \mathrm{C}$ for 10 min ．The reaction mixture was poured into saturated aqueous sodium bicarbonate（ 100 mL ）and extracted with dichloromethane（ $2 \times 100 \mathrm{~mL}$ ）． The combined organic layers were dryed $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo．The residue was purified by col－ umn chromatography（silica； 67% ethyl ether in hexane） to provide $\mathbf{4}(\mathbf{1 . 1 5} \mathrm{g}, \mathbf{8 8 \%}$ from 3$)$ ）${ }^{\mathbf{H}} \mathbf{H M R}(500 \mathrm{MHz}$ ， DMSO－d $)_{6}$ ： 8.7 .88 （ $\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$ ；aromatic）， $7.70(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$ ，aromatic）， $7.61(t, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$ ，aro－ matic）， 7.45 （d．．J＝7．6 Hz． 1 H ，aromatic）， $7.24-7.17$（m， 2 H, aromatic）， 7.14 （ $\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$ ，aromatic）， 4.31 （br $\mathrm{s}, 1 \mathrm{H}, \mathbf{O C H})_{2}$ ， 4.22 （br s，1H， $0 \mathrm{CH}_{2}$ ）， 4.05 （br s， 1 H ， NCH_{2} ）， $\left.3.75-3.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH})_{2}\right) ; 2.92(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}$ ， $1 \mathrm{H}, \mathrm{NCH}_{2}$ ），2．32－2．28（m， $\mathbf{1 H}, \mathrm{CH}_{2}$ ），2．14－2．08（m， 1 H ， $\left.\mathrm{CH}_{2}\right), 1.85-1.80\left(\mathrm{~m}, \mathrm{HH}, \mathrm{CH}_{2}\right), 1.74-1.68\left(\mathrm{~m}, \mathrm{lH}, \mathrm{CH}_{2}\right)$ ， 1．51－1．44（ $\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$ ）， $1.42-1.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ ），1．22－ $1.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR（ $\left.125.8 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right):$ $\delta 154.0,139.3,136.7,134.0,129.5,129.4,127.7,127.6$ ， $126.8,125.6,124.9,67.4,59.2,57.0,54.1,45.0,24.7$ ． 24．2，20．0，18．8．

Spectroscopic data for compound 6．${ }^{1} \mathrm{H}$ NMR（ 300

MHz，DMSO－d ${ }^{\text {）}}: \delta 7.92$（ $\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$ ，aromatic）， 7.73 （t，$J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$ ，aromatic）， $7.64(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$ ， aromatic）， $7.51(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$ ，aromatic）， $7.42(\mathrm{~d}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}$ ，aromatic）， 7.25 （dd，$J=7.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}$ ，aro－ matic），4．41－4．31（m，2H，${ }^{\circ} \mathrm{OCH}_{2}$ ），4．12－4．05（ $\mathrm{m}, 1 \mathrm{H}$ ， NCH_{2} ）， 3.77 （br s， $2 \mathrm{H}, \mathrm{SCH} \mathrm{S}_{2}$ ）， $3.00(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}$ ， $\left.\mathrm{NCH}_{2}\right), 2.35-2.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.17-2.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$ ， $1.90-1.71\left(\mathrm{~m}_{3} 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.53-1.36\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 1.30-$ 1.18 （ $\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}$ ）；${ }^{13} \mathrm{C}$ NMR（ $75.5 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ ）：δ $153.6,139.2,137.9,133.9,132.1,129.4,128.5,128.4$ ， $127.5,125.2,124.7,67.5,59.4,56.7,54.0,44.8,24.6$ ， $24,1,19.8,18.8$ ．

Base－Induced Epoxide Opening of Compound 4. Representative procedure．A solution of epoxide 4 （20 $\mathrm{mg}, 0.048 \mathrm{mmol}$ ）in wet toluene（ 2 mL ）was cooled to $0^{\circ} \mathrm{C}$（ice／water bath）and then，DBU（ $15 \mathrm{mg}, 0,097$ mmol）was added to the solution．The reaction progress was probed at a proper interval by TLC．When the prod－ uct formation was completed the solution wis coincen－ trated in vacuo．The residue was purified by column chromatography（silica， 33% ethyl acetate in hexane）to give diol $4 \mathrm{a}(5.5 \mathrm{mg}, 52 \%$ ）and allylic alcohol 4 hb （ 3.9 mg．40\％）．4a：＇H NMR（ 300 MHz, DMSO－d ）：$\delta 7.19$ （dd，$J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}$ ，aromatic）， 6.86 （td；$J=7.7,1.2$ $\mathrm{Hz}, 1 \mathrm{H}$ ，aromatic）， $6.46-6.40(\mathrm{~m}, 2 \mathrm{H}$ ，aromatic）， 5.71 （br s，1H，NH），4．29（br s，1H，OH）， 3.87 （br s， $\mathbf{1 H}, \mathrm{OH}$ ）， 3.13 （d，J＝11：3．Hz； $1 \mathrm{H}_{9} \mathrm{NCH}_{2}$ ）， 2.87 （br d，$J=11.3 \mathrm{~Hz}$ ， $1 \mathrm{H}_{3} \mathrm{NCH}_{2}$ ），1．95－1：85（ $\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}$ ），1．77－1．70（ $\mathrm{m}, 1 \mathrm{H}$ ， $\left.\mathrm{CH}_{2}\right), 1: 60-1.45\left(\mathrm{~mm}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 1.35-1.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ ， 1．10－0．98（m，1H， CH_{2} ）；${ }^{13} \mathrm{C}$ NMR（ 75.5 MHz ，DMSO－ d_{6} ）：$\delta 144.1,127.4,127.3,126.5,114.8,113.3,71.9$ ， 69．7，48．7，33．7，31．6，23．5，22．5．4b：！H NMR（300 MHz_{4} DMSO－d d_{6} ：$\delta 7.25$（dd，$J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}$ ，aro－ matic）， 6.87 （td，$. J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}$ ，aromatic）， $6.50-6.42$ （ $\mathrm{m}, 2 \mathrm{H}$ ；aromatic）， 6.00 （t， $\mathrm{J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}$ ）， 5.77 （br s，1H，NH）， 4.20 （br s，1H，OH）， 3.04 （dd，$J=12.1,3.1$ $\left.\mathrm{Hz}_{2}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.87\left(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.18-$ 2.12 （m，2H，CH2），1．92－1．80（m，1H， CH_{2} ），1．73－1．58 （ $\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}$ ），1．34－1．25（m，1H， CH_{2} ）；${ }^{13} \mathrm{C}$ NMR（ 75.5 MHz，DMSO－d ${ }_{6}$ ）$\delta 143.9,134.5,127.2 ; 124.2,118.3$ ， 118．1，115．5， $414.0,62.9,52.2,34.6,26.0,17.3$.

Spectroscopic data for componnd 5a．＇H NMR（500 MHz, DMSO－ d_{6} ）：$\delta 7.23-7.18(\mathrm{~m}, 1 \mathrm{H}$ ，aromatic）， 6.24 － 6.17 （ $\mathrm{m}, 2 \mathrm{H}$ ，aromatic）， 6.12 （br s， $1 \mathrm{H}, \mathrm{NH}$ ）， 4.21 （br s， $1 \mathrm{H}, \mathrm{OH}$ ）， 4.02 （br s， $1 \mathrm{H}, \mathrm{OH}$ ）， 3.14 （br d，$J=11.3 \mathrm{~Hz}, 1 \mathrm{H}$ ，
$\left.\mathrm{NCH}_{2}\right), 2.90\left(\mathrm{br}, \mathrm{IH}, \mathrm{NCH}_{2}\right), 1,95-1.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.76-1.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.60-1.50\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 1.42-$ $1.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.11-1.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 163.4$ (${ }^{(} J_{C F}=239 \mathrm{~Hz}$), 146.9 , $129.4,119.0,102.2\left({ }^{2} J_{C r}=22 \mathrm{~Hz}\right), 99.6\left({ }^{2} \mathrm{~J}_{\mathrm{cF}}=24 \mathrm{~Hz}\right)$, $71.7,69.5,48.5,33.7,31.5,23.5,22.5$.

Spectroscopic data for compound 5h. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 7.25$ (dd, $J=8.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}$, aкomatic), 6.27-6.20 (m, 2H, aromatic), 6.18 (br d, $J=3.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NH}$), $5.97(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}), 4.39(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH}$), 3.08 (ddt, $\mathrm{J}=12.2,3.7 \mathrm{~Hz}, \mathrm{H}, \mathrm{NCH}_{2}$), 2.90 (d, $\left.J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.18-2.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.92$ $1.82\left(\mathrm{~m}, \mathrm{IH}, \mathrm{CH}_{2}\right), 1.69\left(\mathrm{dt}, \mathrm{J}=12.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.63-\mathrm{t} .59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.30(\mathrm{td}, \mathrm{J}=13.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 162.1$ ($\mathrm{J}_{\mathrm{cr}}=$ $240 \mathrm{~Hz}), 145.3,129.5,125.9,118.0,114.9,101.9{ }^{2} J_{C F}=$ $22 \mathrm{~Hz}), 99.1\left({ }^{2} J_{C F}=24 \mathrm{~Hz}\right), 62.7,51.8,34.6,26.0,17.3$.

Spectroscopic data for comppund 6a. 'H NMR (300 $\left.\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $6.46-6.42$ (m, 2H, aromatic), 6.14 (br s, $1 \mathrm{H}, \mathrm{NH}$), 4.48 (br s, 1H, OH), 4.08 (br s, 1H, OH), 3.15 (br d, $J=11.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCH}), 2.99\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 1.95-\mathrm{I} .85(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.80-1.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.65-1.50\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.45-1.35 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.17-1.05 (m, 1H, CH2); ${ }^{13} \mathrm{C}$ NMR (75.5 MHz , DMSO-d d_{0}) $\delta 145.5 ; 131.8,128.3,123.5$, $118.3,114.1,70.6,68.2,47.2,33.7,32.6,22.2,21.4$.

Spectroscopic data for compound 6b. 'H NMR (300 $\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 7.24$ ($\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $6.53(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 6.44 (dd, $J=8.3,2.0 \mathrm{~Hz}$, 1 H , aromatic), $6.23(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, \mathrm{IH}, \mathrm{NH}), 6.03(\mathrm{t}, \mathrm{J}=4.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 4.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.11 \cdot 3.06(\mathrm{~m}, 1 \mathrm{H}$, NCH_{2}), 2.91-2.87 (m, 1H, NCH_{2}), 2.17-2.12 (m, 2 H , $\left.\mathrm{CH}_{2}\right), 1.90-1.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.71-1.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.34-1.24\left(\mathrm{~m}, \mathrm{JH}, \mathrm{CH}_{z}\right)$; ${ }^{13} \mathrm{C}$ NMR (75.5 MHz , DMSO$\left.d_{6}\right): \delta 145.1,133.6,131.5,125.9,119.1,117.3,114.9$, $112.6,65.2,51.8,34.5,26.1,17.3$.

Spectroscopic data for compound 7a. 'H NMR (500 $\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 7.13$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $6.60(\mathrm{~d}, J=1.9 \mathrm{~Hz}, \mathrm{IH}$, aromatic), $6.56(\mathrm{dd}, J=8.2,1.9$ $\mathrm{Hz}, 1 \mathrm{H}$, aromatic), 6.14 (br s, $1 \mathrm{H}, \mathrm{N} H$), 4.49 (br s, 1 H , OH), 4.09 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$), 3.13 (br s, $1 \mathrm{H}, \mathrm{NCH}_{2}$), 2.98 (br, 1H, NCH_{2}), 1.95-1.84 (m, $1 \mathrm{H}, \mathrm{CH}_{2}$), 1.78-1.70 (m, $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.63-1.50\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 1.42-1.38(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.35-1.29\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.15-1.05\left(\mathrm{~m}, \mathrm{IH}, \mathrm{CH}_{2}\right) ;$ ${ }^{13} \mathrm{C}$ NMR (125.8 MHz , DMSO-d d_{6} : $\delta 145.8,128.6$,
$126.3,120.5,117.7,116.9,70.6,68.2,47.2,34.5,32.6$, 22.2, 21.5.

Spectroscopic data for compound 7h. 'H NMR (500 MHz, DMSO-d $)_{6}$: $\delta 7.18$ ($\mathrm{d}_{1}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$; aromatic), 6.67 (d, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 6.55 (dd, $J=8.4,1.9$ $\mathrm{Hz}, 1 \mathrm{H}$, aromatic), $6.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{N} H), 6.04(\mathrm{t}, J=4.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 4.49(\mathrm{~s}, \mathrm{HH}, \mathrm{OH}), 3.08(\mathrm{dd}, J=12.3,3.1$ $\left.\mathrm{Hz}_{2}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.88\left(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.20-$ $2.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.90-1.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.71-\mathrm{t} .66$ (m, 1H, CH2), 1.64-1.59 (m, 1H, CH2), 1.33-1.27 (m, $1 \mathrm{H}, \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR (125.8 MHz , DMSO- d_{6}): $\delta 145.4$, $133.7,126.3,120.2,119.2,117.7,117.6,115.5,62.6$, 51.7, 34.5, 26.1, 17.3.

Spectroscopic data for compound 8a. ${ }^{1}$ H NMR (300 MHz, DMSO-d d_{6} : $\delta 6.99(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 6.81 (br s, 1 H , aromatic), 6.75 (br d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 6.09 (br s, 1H, NH), 4.49 (br s, 1H, OH), 4.08 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$), 3.17-3.08 (m, 1H, NCH_{2}), 3.00-2.90 (br, 1 H , $\left.\mathrm{NCH}_{2}\right), 1.95-1.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.78-1.68\left(\mathrm{~m}, \mathrm{HH}, \mathrm{CH}_{2}\right)$, 1.65-1.48 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$), 1.45-1.28 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $1.15-$ $1.05\left(\mathrm{~m}, \mathrm{IH}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): §145.9, 128.7, 125.4, 123.0, 120.8, 97.0, 70.7, 68.1, 47.2, 34.5, 32.5, 22.2, 21.5.

Spectroscopic data for componnd 86. 'H NMR (300 $\left.\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): ~ \delta 7.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 6.88 (br s, 1 H, aromatic), 6.70 (br d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, anomatic), 6.15 (br s. $1 \mathrm{H}, \mathrm{NH}$), 6.04 (br s, $1 \mathrm{H}, \mathrm{CHCH}_{2}$), 4.49 (br s, 1H, OH), 3.10-3.05 (m, 1H, NCH $)$, 2.95-2.85 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCH}_{2}$), 2.20-2.10 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.90-1.80 (m, $\left.1 \mathrm{H} . \mathrm{CH}_{2}\right), 1.75-1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.35-1.25(\mathrm{~m}, 1 \mathrm{H}$, CH_{2}); ${ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO-d d_{6} : $\delta 146.2,127.6$. $126.3,125.4,123.6,119.2,116.1,94.9,65.2,51.7,34.5$, 26.0, 17.2.

Acknowledgment. This work was suppoted by Andong National University (1999).

REFERENCES

I. (a) Konishi, M.; Ohkuma, H.; Matsumoto, K.; Tsuno, T.; Kamei, H.; Miyaki, T.; Oki, T.; Kawaguchi, H.; VanDuyne, G. D.; Clardy, J. J. Antibot. 1989, 42, 1449. (b) Konishi, M.; Ohkuma, H.; Tsuno, T.; oki, T.; VanDuyne, G. D.; Clardy, J. J. Am. Chem Soc. 1990, /12. 3715. (c) Langley, D. R.; Doyle, T. W.; Beverridge, D. L. J. Am. Chem. Sac. 1991, 113, 3495.
2. (a) Bergman, R. G. Acc. Chem. Res. 1973, 6. 25. (b) Jones, R. R.; Bergman, R. G. J. Am. Chem. Soc. 1972, 94, 660 .
3. (a) Sugiura, Y.; Shiraki, T; Konishi, M.; Oki, T. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 3831. (b) Nicolaou, K. C.; Smith, A. L.; Wendebom, S. V.; Hwang, C.-K. J. Am. Chem. Sac. 1991, 113, 3106.
4. (a) Hong, Y. P.; Woo, L. Bull Korean Chem. Soc. 1997, 18, 229. (b) Hong, Y. P.; Woo, L. J. Konean Chem. Soc., 1998, 42, 467.
5. Nicolaou, K. C.; Dai, W.-M.; Hong, Y. P.; Tsay, S.-C.; Baldridge, K. K.; Siegel, J. S. J. Am Chem. Soc. 1993, I15, 7944.

