Study on the Solubilization of Phenoxide Anion by Mixed Surfactant Systems of CTAB and TTAB

CTAB/TTAB 혼합계면활성제에 의한 Phenoxide 음이온의 가용화에 대한 연구

  • Lee, Byung-Hwan (Department of Applied Chemical Engineering, Korea University of Technology andEducation)
  • 이병환 (한국기술교육대학교 응용화학공학과)
  • Published : 20000600

Abstract

The interaction of phenoxide anion with .the mixed micelles of CTAB(Cetyl-trimethylammonium bromide) and TTAB(Tetradecyltrimethylammonium bromide) was studied by UV/Vis spectrophotometric method. The solubilization constants($K_s$) of phenoxide anion into the mixed micellar phase and the critical micellar concentrations(CMC) of those mixed surfactant systems have been measured and analyzed with the change of overall mole fraction of CTAB($\alpha_{CTAB}$) The effects of additives(n-pentanol and NaBr) on the solubilization of phenoxide anion by those mixed surfactant systems have been also measured. There was a great decrease on the values of solubilization constant and CMC with these additives. For the thermodynamic study, the dependence of $K_s$ values on temperature has been measured and various thermodynamic parameters(${\Delta}G^0_s$, ${\Delta}H^0_s$ and ${\Delta}S^0_s$) have been also calculated. The results show that all the values of ${\Delta}G^0_s$ and ${\Delta}H^0_s$ are negative within the measured temperature region but the values of ${\Delta}S^0_s$ are positive.

CTAB/TTAB 혼합계면활성제 용액에서 Phenoxide 음이온의 가용화를 UV/Vis분광광도법을 이용하여 연구하였으며, 혼합계면활성제의 몰분율조성($$\alpha_{CTAB}$)에 따른 가용화상수(Ks)와 임계마이셀농도(CMC)의 변화를 측정하고 분석하였다. 또한 Phenoxide 음이온의 가용화에 영향을 미치는 n-펜탄을과 NaBr의 효과에 대하여 조사하였으며, 이러한 첨가제는 $K_s$와 CMC 값을 큰 폭으로 감소시키는 경향을 나타내었다·열역학적 고찰을 위하여 $K_s$ 값의 온도에 따른 변화를 측정하였으며, 온도에 따른 $K_s$ 값의 변화로부터 Phenoxide 음이온의 가용화에 대한 열역학 함수값(${\Delta}G^0_s$, ${\Delta}H^0_s$${\Delta}S^0_s$)을 계산하였다·그 결과 ${\Delta}G^0_s$${\Delta}H^0_s$은 측정한 범위 내에서 모두 음의 값을 그리고 ${\Delta}S^0_s$ 은 모두 양의 값을 나타내었다.

Keywords

References

  1. Solubilization in Surfactant Aggregates Christian, S. D.
  2. Catalysis in Micellar and Macromolecular Systems Fendeler, J. H.;Fendler, E. J.
  3. J. Phys. Chem. v.97 no.5435 Blasko, A.;Bunton, C. A.;Wright, S.
  4. J. Am. Chem. Soc. v.103 no.5439 Fendler, J. H.;Hinze, W. L.
  5. J. Phys. Chem. v.9 no.2372 Moroi, Y.;Mitsunobu, K.;Morisue, T.;Kadobayashi, Y.;Sakai, M.
  6. Solubilizatioin and Related Phenomena McBain, M. E. L.;Hutchinson, E.
  7. Langmuir v.11 no.4719 Takeuchi, M.;Moroi, Y.
  8. J. Phys. Chem. v.83 no.680 Bunton, C. A.;Sepulveda, L.
  9. J. Colloid Interface Sci. v.48 no.110 Dougherty, S. J.;Berg, J. C.
  10. J. Colloid Interface Sci. v.120 no.118 Nugara, N.;Prapaitrakul, W.;King, Jr. A. D.
  11. J. Phys. Chem. v.85 no.3689 Hirose, C.;Sequlveda, L.
  12. J. Colloid Interface Sci. v.197 no.230 Takeuchi, M.;Moroi, Y.
  13. Langmuri v.15 no.6770 Rodrigues, M. A.;Alonso, E. O.;Yihwa, C.;Farah, J. P. S.;Quina, F. H.
  14. J. Phys. Chem. v.95 no.360 Lee, B. H.;Christian, S. D.;Tucker, E. E.;Scamehorn, J. F.
  15. J. Colloid Interface Sci. v.129 no.406 Bertolotti, S. G.;Garcia, N. A.;Gaponer, H. E.
  16. Langmuir v.12 no.4324 Lopez, B. E. W.;Gonzalez, J. V.;Gamboa, C.
  17. J. Korean. Chem. Soc. v.42 no.383 Lee, B. H.
  18. Langmuir v.12 no.1744 Bachofer, S. J.;Simonis, U.
  19. J. Phys. Chem. v.96 no.1794 Shanks, P. C.;Franses, E. I.
  20. J. Colloid Interface Sci. v.93 no.43 Zana, R.;Picot, C.;Duplessix, R.
  21. J. Colloid Interface Sci. v.125 no.456 Moroi, Y.;Matuura, R.
  22. Langmuir v.10 no.1359 Makayassi, A.;Bury, R.;Treiner, C.
  23. J. Korean. Chem. Soc. v.43 no.614 Lee, B. H.
  24. Bull Korean Chem. Soc. v.11 no.54 Park, J. W.;Cho, H. S.
  25. J. Korean. Chem. Soc. v.42 no.519 Lee, B. H.
  26. Langmuir v.11 no.3388 Burrows, J. C.;Flynn, J.;Kutay, S. M.;Leriche, T. G.;Marangoni, D. G.
  27. J. Colloid Interface Sci. v.129 no.139 Sharma, B.;Rakshit, A. K.