
712 Bull. Korean Chem. Soc. 2000, Vol. 21, No. 7 Sungyul Lee

Non-Lorentzian Resonance Due to the Detuning in One-C이or 
Two-Photon Photodissociation

Sungyul Lee

Department of Chemistry^ Kyunghee University^ Kyungki-do 449-701, Korea
Received M(矽 15, 2000

Non-Lorentzian resonance is predicted to occ탸f in two-photon photoabsorption processes d탾e to the det탾ning 
off the intermediate levels. This type of non-Lorentzian resonance is distinct from the asymmetric resonance 
res탾Iting from the effects of q탾ant탸m interference between competing indisting탾ishable dynamic pathways. 
The prod탾ct distrib탾tions are shown to be constant near this type of resonance.

Introduction

Resonance1 is the concept bridging the molecular spec
troscopy and the reaction dynamics, since it can be described 
as discrete state imbedded in continuum. The characteristics 
of the resonance, such as the position and width, can provide 
a wealth of invaluable information on the molecule. The 
Lorentzian resonances,2 for which these two latter parame
ters are of primary importance, have been studied inten
sively. In contrast, studies on non-Lorentzian resonances 
were relatively rare, because their importance was not appre
ciated very much. For the non-Lorentzian resonances, line 
shape is another important characteristics, in addition to 
position and width.

One type of non-Lorentzian resonances is the so-called 
Fano profile,3 which has been a focus of many experimental 
and theoretical studies. Although observations of this inter
esting feature in the photodissociation processes have been 
rather infrequent compared with those for autoionization,4 
quite numerous reports were recently made on the asymme
tric resonances in photodissociation spectra of the molecules 
such as H2 [Ref. 5], NO [Ref. 6], FNO [Ref. 끼, Cs2 [Ref. 8], 
and O2 [9]. The origin of the asymmetric resonance is well 
known to be the quantum interference between multiple dy
namic pathways. Although most asymmetric resonances were 
experimentally observed or predicted for Feshbach type reso
nances, shape resonances10 were also known to yield them. 
Overlapping resonance11 is another type of non-Lorentzian 
resonances that begins to attract a lot of attention recently. 
While most of these non-Lorentzian resonances were stud
ied in one-photon processes, investigation on them in mul
tiphoton processes were very rare to our best knowledge. 
One may intuitively assume that the asymmetric resonances 
in multiphoton processes be due to the efibcts of quantum 
interference as in one-photon processes, but this supposition 
may not be true. Indeed, we show in the present work that 
there may be another origin of non-Lorentzian resonances in 
two-photon processes. Further discussions on this type of 
resonance in connection to product control will be given in 
subsequent publications.

In this work, we describe non-Lorentzian resonances that 
can be observed in one-color two-photon'?시耳 photodissocia
tion processes. We show that this type of non-Lorentzian 

resonances is not due to the elects of the quantum interfer
ence, but that they result from detuning in the multiphoton 
photoabsorption processes. We first employ a simple pheno
menological argument to introduce this type of asymmetric 
resonances, and then proceed to detailed computation on 
realistic model systems. We discuss the significance of the 
present study in connection with the control of photodissoci
ation processes.

We compute the second order transition amplitudes of the 
two-photon photodissociation processes,15 
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where | 丿〉is the eigenstate of the intermediate state Hamil
tonian, Ei is the energy of the initi al state | 1), v is the pho
ton frequency, and \ f} is the final (scattering) state. Here it 
is assumed that the transition dipole moments are incorpo
rated in |，)and \f). The energy eigenstate representation 
of the Greenes operator G{+\ 

G”）= 四J,E，+ E 엠，+ 讫 (2)

is employed to compute the transition amplitudes in Eq. (1). 
The Greenes operator G(+) is calculated by employing an effi
cient numerical method that was described in Ref [16]. It 
should be pointed out that, although model potentials (expo
nential and harmonic oscillator potentials) are employed in 
this work for simplicity, the numerical method can treat arbi
trary potentials for real molecules.

When the energy of the photon is such that only one inter
mediate resonance significantly contributes, the transition 
amplitude in Eq. (1) can be simplified to

T = 〈刃丿)시，) c
弁 E^ + h v -Ej + iq ' I기

The transition probability can be expressed as

I께2 =「0丿朋 이叫, . (4)
\Et + h v -Ej+ 的「

The one-photon transition probability \{ f\j) |2 for the 
transition from the intermediate state | 丿)to the final state 
\f) can be described, in the absence of the effects of quan-
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turn interference, by the Lorentzian function,

------------- ---- ------------ 2， (5)
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where v and v are the 什equencies of the two photons, r is 
the width of the Lorentzian function, Efis the energy of the 
final state, and A is the proportionality factor. Defining the 
two detunings as

卜=E% + h v - Ej (6a)

and

、=E[ + h v + h v -氐=氐 + 2 hv -氐, (6b)

(v=v2 in one-color two-photon processes) the transition 
probability is obtained as
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Figure 2. Schematic diagram of the model potential curves.

where Fy is the Franck-Condon factor of the transition from 
|，〉to | 丿〉.

We begin with a phenomenological description of the reso
nance in Eq. (7). Of the four parameters,鸟 and M 月 and 
「only the detunings 鸟 and Af are functions of the fre
quency of the photon. Depending on the detunings 鸟 and 
M the transition probability may exhibit a variety of non- 
Lorentzian shapes. Figure 1 depicts several absorption spec
tra, based on Eq. (7), for different set of the parameters 鸟 
and M 月.and r. It can be seen that the resulting resonance 
is Lorentzian only when the zero of the two detunings △/ 
and △广 coincide at one frequency. In other cases, the reso
nances are all non-Lorentzian. It should be noted that one of 
these resonances even exhibits two peaks.

In more general situations where there is more than one 
dissociation products correlated with the final dissociative 
states, more complicated model is required to describe the 
dynamics, and the transition amplitudes as described in Eq. 
(1) must be evaluated. Thus we adopt a realistic model sys-
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Figure 1. Line profiles computed by Eq. (7) for one-color two- 
photon process; Solid line:「=月・=5 cmT, §=10000 cm-1, Ef= 
20000 cm-. Do^ed line:「=月=5 cm-, §=9997 cm-1, Ef= 19993 
cm-i. Dashed line:「=月=2 cm-' §=9995 cm-' 与=200(* cm-1.

tem that consists of two interacting (one is bound, the other 
is repulsive) intermediate states, and three interacting (two 
of them are repulsive and the other is bound) final states. 
This model system is depicted in Figure 2. The ground state 
is a harmonic oscillator state with vibrational quantum of 
200 cm-1. The reduced mass of the system is 40 amu. The 
final bound state is a displaced (by 0.3 bohr) harmonic oscil
lator state with the same vibrational quantum. Each of the 
two final dissociative states interacts with the final harmonic 
oscillator state by 100 cm^ x exp (-(T?-3)2). The radiative 
decay width of the intermediate resonance may be treated 
simply by employing proper value for 月.The parameters 
for these two final dissociative states (F= - exp (~F(R+a)) 
are F = 2.5 bohr-1, a = 3.0 bohr (product channel I), and F = 
3.0 bohr-1, a = 2.5 bohr (product channel II). It is assumed in 
this model that these two final dissociative states are not 
coupled. The intermediate states consist of a harmonic oscil
lator state (identical to the ground state, but displaced by 0.2 
bohr), and a repulsive state (F = - exp (-戶(」R+。)). The inter
mediate bound state is allowed to predissociate by coupling 
with the intermediate repulsive state by the interactions of 
100 cm-i x exp (-(T?-3)2). The vertical displacements of the 
intermediate and final state harmonic oscillator potentials 
are such that the energy from the bottom of the wells are 67 
cm-i and 83 cm-1, respectively, when the system is excited to 
the bottom of the final harmonic oscillator potential.

Transition moment from the ground state to the bound 
intermediate state, and that from the bound intermediate 
state to the final bound state are taken to be nonzero (we set 
them to unity fbr convenience). Other transitions are assum
ed to vanish. This choice strictly eliminates the effects of the 
quantum interference (fbr example, allowing optical transi
tion from the initial state to the intermediate or final conti
nuum state (see Figure 2), coupled with the bound states, 
may give rise to quantum interference: see Ref. 19). Conse
quently, the one-photon spectra fbr transition from the 
ground state to the intermediate manifold, and that from the
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Figure 3. Cross Sections (solid lines) and branching ratios (dashes) 
in one-color two-photon process obtained in the absence of the 
built-in quantum interference. The branching ratios do not change 
in the vicinity of the non-Lorentzian resonances. The origin of 
energy is taken to be the bottom of the ground state potential.

bound intermediate state to final states are Lorentzian. The 
resulting Zwo-photon spectrum fbr transition from the 
ground state to the final states is not symmetric (that is, non- 
Lorentzian), however, due to the effects of the two detunings 
4 and △厂

Figure 3 clearly shows that the one-color two-photon 
spectra can be non-Lorentzian. The partial cross sections fbr 
the product channels I and II exhibit splittings due to the 
effect of the detunings. It must be noted that the present type 
of non-Lorentzian resonances are not the results of the 
effects of quantum interference, and consequently, they are 
different from the Fano profiles. It is very noteworthy that 
the line shapes of the two partial cross sections depicted in 
Figure 3 are very similar to each other. The important conse
quence of this observation is that the branching ratios (the 
ratio of the dissociation cross sections to product I and II to 
total cross sections) do not change near the resonance, as 
also shown in Figure 3. In that sense, the dynamics near this 
type of non-Lorentzian resonances is very much like that of 
isolated Lorentzian resonances. This is in radical contrast to 
the dynamics in the vicinity of the Fano profiles, where all 
the properties of the photofragments exhibit rapid changes.17-19 
On the other hand, in the absence of this built-in quantum 
interference, the effects of the detuning in the intermediate 
excitation step in the first example will not bring difference 
between the partial cross sections to the product, since the 
dependence of the detunings on the energy in the denomina
tor of Eq. (7) will distort the partial cross sections from the 
Lorentzian line shapes in an identical fashion, yielding iden
tical line shapes and constant branching ratios across the reso

nance. Thus, in actual two-photon experiments, the mea
surements of the product branching ratios could conve
niently distinguish between the effects of the built-in quan
tum interference and the effects of the detunings.
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