Abstract
Depletion kinetics of ground state FeO molecules by $0_2$, $N_2O$ and $N_2$ has been studied at room temperature. The ground state FeO molecules were generated by photolysis of a $Fe$(CO)_5$/M(O_2$, $N_2O)/He$ mixture using an unfocused weak UV laser beam. The formation of ground state FeO molecules was identified by a laser-induced fluorescence (LIF) method. The intensity distribution of those undisturbed rotational lines suggests that the rotational temperature of the ground state FeO molecules is lower than room temperature. The LIF intensities of FeO molecules at different partial pressures of $0_2$, $N_2O$ and $N_2$ were monitored as a function of the time delay between the photolysis and probe laser pulses to obtain the depletion rate constants for the ground state FeO. They were 1.7+ 0.2x $10^{-12}$, 4.8 $\pm0.4$ x $10^{-12}$, and $1.4\pm$ 0.2x $10^{-12}cm^3$molecule^{-1}s^{-1}$$ by $0_2$, $N_20$, and $N_2$, respectively.