Rearrangement and Cyclization of N-Allyl Quaternary Anilinium Salts

Jung-Hyu Shin,* Jeongkyu Park, Yongsil Lee, and Changjin Lee*

Department of Chemistry, Seoul National University, Seoul 151-742, Korea

†Advanced Materials Division, Korea Research Institute of Chemical Technology, Yusung, Taejeon 305-600, Korea
Received November 15, 1999

In general, allyl migration in *N*-allyl-arylamines, the aromatic amino-Claisen rearrangement, is not easily accomplished¹ and rearrangements of allyl group are observed only with the relief of ring strain,² with the use of Brönsted or Lewis acid catalyst^{3,4} or with the use of zeolite.⁵ Schmid *et al.* briefly describe the charge-induced aromatic amino-Claisen rearrangements of quaternary anilinium salts such as *N*-allyl-*N*,*N*-dimethylanilinium tetraphenylborates (BPh₄) as shown below.⁴

However, the yield is moderate (42%) and the reaction time is rather long (18 hours). Recently, we found that the benzyl group in *N*-benzyl-*N*,*N*-dimethylanilinium hexafluoroantimonates (SbF₆) migrates to the ortho or para position of aniline when heated in neat.⁶ Since the rearrangement proceeded in high yield (77-92%) at relatively low temperature (120-140 °C), we were tempted to see if the allyl group instead of the benzyl group migrates in a similar fashion.

We prepared SbF₆ salts of *N*-allyl-*N*,*N*-dimethylanilinium derivatives by reacting the corresponding allyl chloride with aniline derivatives in acetonitrile and exchanging Cl⁻ with SbF₆ as reported in the literature⁷ (Scheme 1). The prepared *N*-allyl-*N*,*N*-dimethylanilinium salts were purified by recrystallization(methanol); their ¹H NMR and ¹³C NMR spectra were consistent with the assigned structures.

When the salts 1 were heated in neat at 120 °C for 1 hour,

Scheme 1

2-allylanilinium salts 2, the rearranged products, were obtained along with N_iN -dimethylindolinium salts 3. The ratio of the products 2 and 3 was dependent on the structure of the salts and the reaction temperature, and could be determined by the comparison of ¹H NMR integration intensity of the benzylic protons in crude mixtures. Table 1 lists the ratios of 2 and 3 when the salts 1 were heated at 120 °C. The cyclized salts 3 are believed to be produced by the addition of the proton at nitrogen atom in 2 to the olefin, followed by the intramolecular nucleophilic addition of nitrogen atom to the generated cations. Only indolinium salts 3 were obtained in good yields at 140 °C for 1 hour and the yields of indolinium salts produced at this conditions are shown in Table 1. The substituent in the aniline had little effect on the ratio of 2 and 3, but methyl substitution on the allyl group retarded the cyclization reaction, which increased the ratio of 2d and 2e over 3d and 3e, respectively, at 120 °C and also lowered the yield of indolinium at 140 °C.

Such indoline derivatives were also observed when *N*-allyl-*N*-methylaniline derivatives were refluxed in the presence of ZnCl₂ in xylene or zeolite in hexane.^{3,4} However, in this case, mixtures of products were always observed and yields of cyclized products, indoline derivatives, were not high. In the present study, more than 72% of indolinium salts was obtained as the only product in the shorter reaction time, which indicates that the rearrangement of allyl group is very efficient in this system.

When *N*-crotyl(substituted salt 4), instead of *N*-allyl, was heated in neat at 140 °C, 4-crotylanilinium salt 7, which resulted from a consecutive double [3,3] sigmatropic rearrangement, was obtained as the only product (92%) as shown in Scheme 2. No ortho rearranged product 6 was detected in the reaction mixture. High steric interaction during the course of H-shift between the methyl group in anilinium and methylallyl group at the ortho position probably prevents the conversion of 5 to 6. A similar trend has been

Table 1. Thermal rearrangement of *N*-allyl-*N*,*N*-dimethylanilinium salts (1)

	X	R	ratio of 2; 3 ^a	Yield of 3 (%) ^h
a	Н	Н	1:3.4	92
b	CH_3	Н	1:3.2	90
c	OCH_3	Н	1:4	95
d	Н	CH_3	1.6:1	72
e	CH_3	CH_3	2:1	83

"Ratio of 2 and 3 at 120 °C for an hour. *Isolated yield of 3 at 140 °C for an hour.

Scheme 2

observed in the Claisen rearrangement of crotyl phenyl ether.⁸ The exclusive production of **7** from **4** indicates that this amino-Claisen rearrangement may undergo a concerted [3,3] sigmatropic pathway as in the usual Claisen rearrangement, although the involvement of allylic cation⁷ can not be excluded. Anilinium hexafluoroantimonate **7** was easily converted to 4-crotyl-*N*,*N*-dimthylaniline **8** by 10% aqueous sodium hydroxide solution.

If para position of aniline was blocked, as in *N*-crotyl-*N*.*N*-dimethyl-*p*-toluidinium salt **9**, *N*, *N*-dimethyl-*p*-toluidinium salt **10** was produced in 75% yield (Scheme 3). In this case, butadiene was generated as a by-product, which could be readily removed. Since the generated salt **10** is a strong proton acid, it can serve as a good latent thermal proton acid generator.

We describe here a novel charge induced amino-Claisen rearrangement in N-allyl- and N-crotyl-N,N-dimethylanilinium SbF₆ salts, which resulted in high yield of rearranged products when heated in neat. Further studies to utilize the thermal acid generator in polymer synthesis and to use this amino-Claisen rearrangement in the synthesis of indoline derivatives are underway.

Acknowledgment. The author wishes to acknowledge the financial support of the Korea Research Foundation made in the program year 1999 (Grant No. 99-015-D00178).

References

(a) Rhoads, S. J.; Rautins, N. R. Org. React. 1975, 22, 1.
 (b) Lutz, R. P. Chem. Rev. 1984, 84, 205.

- 2. Scheiner, P. J. Org. Chem. 1967, 33, 2628.
- (a) Hurd, C. D.; Jenkins, W. W. J. Org. Chem. 1957, 22, 1418.
 (b) Bader, A. R.; Bridgwater, R. J.; Freeman, P. R. J. Am. Chem. Soc. 1961, 83, 3319.
 (c) Hansen, H-J.; Schmid, H. Helv. Chim. Acta 1973, 56, 2644.
- Schmid, M.; Hansen, H-J.; Schmid, H. Helv. Chim. Acta 1973, 56, 105.
- 5. Sreckumar, R.; Padmakumar, R. *Tetrahedron Lett.* **1996**, 37, 5281.
- Park, J.; Shin, J-H.; Lee, C. Tetrahedron Lett. 1999, 40, 7485.
- (a) Nakano, S.; Endo, T. J. Polym. Sci., Polym. Chem. 1995, 33, 505. (b) Jolidon, S.; Hansen, H-J. Helv. Chim. Acta 1977, 60, 978.
- (a) Dauben, W. G.; Cogen, J. M.; Behar, V. *Tetrahedron Lett.* 1990, 31, 3241.
 (b) Takamatsu, N.; Inoue, S.; Kishi, Y. *Tetrahedron Lett.* 1971, 22, 4661.
- Lee, S-B.; Jung, H.; Lee, K. W. Bull. Korean Chem. Soc. 1996, 17, 362.
 - The spectral properties of selected compounds are as follows. 3a: mp 90-92 °C; ¹H NMR (500 MHz, acetone- d_b) δ 1.80 (d, 3H, J = 3.7 Hz), 3.31 (dd, 1H, J = 9.9, 6.4 Hz), 3.35 (s, 3H), 3.56 (m, 1H), 3.72 (s, 3H), 4.56 (m, 1H), 7.5-7.8 (m, 4H); ¹³C NMR (125 MHz, acetone-d₆) 13.63, 35.16, 52.73, 77.43, 118.83, 127.96, 130.61, 132.36, 134.65, 149.19, 3b; mp 101-103 °C; ¹H NMR (500 MHz, acetone-d₆) δ 1.77 (d, 3H, J = 4.0 Hz), 2.41 (s, 3H), 3.25 (dd, 1H, J = 9.9, 6.3 Hz), 3.31 (s, 3H), 3.51 (m, 1H), 3.68 (s, 3H), 4.52 (m, 1H), 7.3-7.7 (m, 3H); ¹³C NMR (125 MHz, acetone- d_6) 13.64, 21.59, 35.06, 49.93, 52.77, 77.59, 118.38, 128.21, 131.13, 142.86, 146.92. 3c: mp 75-76 °C; ¹H NMR (300 MHz, acctone-d₆) δ 1.79 (d, 3H, J – 6.7 Hz), 3.28 (dd, 1H, J = 10.1, 7.7 Hz), 3.33 (s, 3H), 3.51 (m, 1H), 3.70 (s, 3H), 3.87 (s, 3H), 4.55 (m, 1H), 7.0-7.7 (m, 3H); ¹³C NMR (75 MHz, acetone-d₆) 13.23, 34.79, 49.66, 52.45, 56.34, 77.26, 111.82, 115.85, 119.32, 135,90, 141,49, 162,49. **3d**: mp 148-150 °C; ¹H NMR (300 MHz, acetone-d₆) δ 1.74 (s, 3H), 3,52 (s, 2H), 3.54 (s. 6H), 7.5-7.8 (m, 4H); ¹³C NMR (75 MHz, acetone-d₆) 21.33, 41.06, 49.47, 83.55, 118.75, 127.78, 130.17, 131.82, 134.27, 147.68. **3e**: mp 152-153 °C; ¹H NMR (300 MHz, acetone-d₆) δ 1.72 (s, 3H), 2.42 (s, 3H), 3.45(s, 211), 3.48 (s, 611), 7.3-7.7 (m, 3H); ¹³C NMR (75 MHz, acetone-d₆) 21.14, 22.36, 40.98, 49.50, 83.58, 118.32, 128.03, 130.62, 134.19, 142.27, 145.38, 7: ¹H NMR (300 MHz, acetone- d_b) δ 1.67 (d, 3H, J = 6.0 Hz), 3.57 (s, 6H), 3.40 (br, 2H), 5.60 (m, 2H), 7.48 (d, 2H, J = 8.7 Hz), 7.75 (d, 2H, J = 8.7 Hz); ¹³C NMR (75 MHz, acetone-d₆): 18.40, 39.25, 48.43, 121.99, 128.28, 130.46, 131.72, 141.00, 145.31, **8**: ELMs m/z 175 [M]⁺; ¹H NMR (500) MHz, CDCl₃) δ 1.67 (d, 3H, J = 5.8 Hz), 2.90 (s, 6H), 3.22 (d, 2H, J = 6.2 Hz), 5.51 (m, 2H), 6.70 (d, 2H, J = 8.7 Hz),7.04 (d. 2H, J = 8.7 Hz); ¹³C NMR (75 MHz, CDCl₃) 17.80, 38.01, 40.91, 113.09, 125.46, 129.02, 129.28, 130.92, 149.17. 10: ¹H NMR (300 MHz, acetone-d₆) δ 2.42 (s, 3H), 3.57 (s, 6H), 7.48 (d, 2H, J - 8.1 Hz), 7.72 (d, 3.1 Hz)21I, J = 8.7 Hz); ¹³C NMR (75 MHz, acetone-d₀) 20.88, 48.01, 119.57, 131.35, 139.18, 141.52,